Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression  A.L.

Slides:



Advertisements
Similar presentations
Lower cervical spine facet cartilage thickness mapping
Advertisements

Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical.
Muscle weakness causes joint degeneration in rabbits
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Intra-articular injection of the cyclooxygenase-2 inhibitor parecoxib attenuates osteoarthritis progression in anterior cruciate ligament-transected knee.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Adiabatic rotating frame relaxation of MRI reveals early cartilage degeneration in a rabbit model of anterior cruciate ligament transection  J. Rautiainen,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
T.A. Schmidt, Ph.D., R.L. Sah, M.D., Sc.D. 
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell- delivery vehicle  C.D. Hoemann, Ph.D., J. Sun, M.D., A. Légaré, M.Sc.,
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
H. Moriyama, Ph. D. , O. Yoshimura, Ph. D. , S. Kawamata, Ph. D. , K
Deformation patterns of cracked articular cartilage under compression
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Regional cell density distribution and oxygen consumption rates in porcine TMJ discs: an explant study  J. Kuo, C. Shi, S. Cisewski, L. Zhang, M.J. Kern,
C. R. Henak, C. L. Abraham, A. E. Anderson, S. A. Maas, B. J. Ellis, C
M.L. Hall, D.A. Krawczak, N.K. Simha, J.L. Lewis 
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
Three-dimensional distribution of articular cartilage thickness in the elderly cadaveric acetabulum: a new method using three-dimensional digitizer and.
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
Intra-articular anaesthesia mitigates established pain in experimental osteoarthritis: a preliminary study of gait impulse redistribution as a biomarker.
A clinically realistic large animal model of intra-articular fracture that progresses to post- traumatic osteoarthritis  J.E. Goetz, D. Fredericks, E.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
UTE bi-component analysis of T2* relaxation in articular cartilage
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
K.H. Collins, R.A. Reimer, R.A. Seerattan, T.R. Leonard, W. Herzog 
A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van.
D.R. Rich, A.L. Clark  Osteoarthritis and Cartilage 
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
Effect of muscle weakness and joint inflammation on the onset and progression of osteoarthritis in the rabbit knee  C. Egloff, A. Sawatsky, T. Leonard,
Evidence for articular cartilage regeneration in MRL/MpJ mice
Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical.
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads  Y.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Ovariectomy alters the structural and biomechanical properties of ovine femoro-tibial articular cartilage and increases cartilage iNOS  M.A. Cake, Ph.D.,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
Lower cervical spine facet cartilage thickness mapping
Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage  Z.A Cohen, Ph.D., V.C.
Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical.
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
K.L. Caldwell, J. Wang  Osteoarthritis and Cartilage 
C. R. Henak, E. D. Carruth, A. E. Anderson, M. D. Harris, B. J
J.F. Nishimuta, M.E. Levenston  Osteoarthritis and Cartilage 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
I. Gurkan, A. Ranganathan, X. Yang, W. E. Horton, M. Todman, J
Presentation transcript:

Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression  A.L. Clark, Ph.D., T.R. Leonard, B.Sc., L.D. Barclay, B.A., J.R. Matyas, Ph.D., W. Herzog, Ph.D.  Osteoarthritis and Cartilage  Volume 14, Issue 2, Pages 120-130 (February 2006) DOI: 10.1016/j.joca.2005.08.016 Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 A typical force–time trace throughout the stress-relaxation test of an experimental patellar specimen. The maximum force of 7.1N corresponds to an average pressure of 9MPa across the indentor surface. The value of 9MPa is the average patellofemoral contact pressure17 for a peak patellofemoral contact force of 170N occurring during normal cat gait11. When the fixative solution was applied 20min after peak force, the cartilage had already reached >80% of its final relaxation at the end of the 200min loading period. Osteoarthritis and Cartilage 2006 14, 120-130DOI: (10.1016/j.joca.2005.08.016) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 A diagram showing the position of the 1-mm-diameter indentation (black circle), the 3mm×1mm2 osteochondral block (grey rectangle) incorporating the indent, and the split-line pattern of the feline patella and femoral groove. The indent and blocks are drawn approximately to scale relative to the size of the patella and femoral grove. The split-line pattern was determined using the established India Ink needle technique26. Osteoarthritis and Cartilage 2006 14, 120-130DOI: (10.1016/j.joca.2005.08.016) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Typical sections of not-indented patellar and femoral groove articular cartilage taken from the contralateral and experimental hindlimbs of one animal. Previously published sections from a normal adult cat have been added for comparison18. The superficial (S), middle (M) and deep (D) layers are marked to the left of each section. Normalised cartilage depth values and 5% or 10% bins of cartilage depth are indicated on the right of the contralateral patella section. All sections are 0.5μm thick, stained with toluidine blue and photographed at 50× magnification. Note the increased tissue thickness and the larger and more frequently clustered chondrocytes in the middle layer of experimental compared to contralateral patellar cartilage. Osteoarthritis and Cartilage 2006 14, 120-130DOI: (10.1016/j.joca.2005.08.016) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 Typical sections of not-indented and indented patellar articular cartilage taken from the contralateral and experimental hindlimbs of one animal. Previously published sections from a similar indentation experiment using normal adult cats have been added for comparison18. All sections are 0.5μm thick, stained with toluidine blue and photographed at 25× magnification. Note the black lines highlighting the tendency of deep layer chondrocytes to be vertically aligned in control tissue and at a more 45°/135° angle to the cartilage–bone interface in indented tissues. Osteoarthritis and Cartilage 2006 14, 120-130DOI: (10.1016/j.joca.2005.08.016) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Graphs of chondrocyte shape as a function of normalised cartilage depth (0=surface, 1=cartilage–bone interface) for not-indented and indented (a) patellar and (b) femoral groove cartilages from contralateral (contra) and experimental (exp) hindlimbs. Previously published chondrocyte shape data from a similar experiment using normal adult cats have been added to the graph for reference18. Cartilage depth is further divided into the superficial, middle and deep layers. Each point on the graph represents a mean value (n=6) of chondrocyte shape across a 5% or 10% bin (Fig. 3) of cartilage depth (n>10 cells per bin). Error bars represent one standard deviation from the mean. Representative ellipses with their centroids positioned at the corresponding values of chondrocyte shape are shown on the right hand side. Osteoarthritis and Cartilage 2006 14, 120-130DOI: (10.1016/j.joca.2005.08.016) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Graphs of chondrocyte volumetric fraction as a function of cartilage layer for not-indented and indented (a) patellar and (b) femoral groove cartilages from contralateral (contra) and experimental (exp) hindlimbs. Previously published chondrocyte volumetric fraction data from a similar experiment using normal adult cats have been added to the graph for reference18. Each bar represents a mean value (n=6) of chondrocyte volumetric fraction for a given layer. Error bars represent one standard deviation from the mean. Osteoarthritis and Cartilage 2006 14, 120-130DOI: (10.1016/j.joca.2005.08.016) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 7 Graph of chondrocyte cross-sectional area as a function of normalised cartilage depth (0=surface, 1=cartilage–bone interface) for not-indented patellar (pat) and femoral groove (fem) cartilages from experimental (exp) and contralateral (contra) hindlimbs. Each point represents a mean value (n=6) of chondrocyte area across a 5% or 10% bin (Fig. 3) of cartilage depth (n>10 cells per bin). Error bars represent one standard deviation from the mean. Osteoarthritis and Cartilage 2006 14, 120-130DOI: (10.1016/j.joca.2005.08.016) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions