SPM2: Modelling and Inference Will Penny K. Friston, J. Ashburner, J.-B. Poline, R. Henson, S. Kiebel, D. Glaser Wellcome Department of Imaging Neuroscience, University College London, UK
What’s new in SPM2 ? Spatial transformation of images Batch Mode Modelling and Inference
SPM99 fMRI time-series Kernel Design matrix Inference with Gaussian field theory Statistical parametric map (SPM) Realignment Smoothing General linear model Normalisation Adjusted regional data spatial modes and effective connectivity Template Parameter estimates
What’s new in SPM2 ? Spatial transformation of images Batch Mode Modelling and Inference Expectation-Maximisation (EM) Restricted Maximum Likelihood (ReML) Parametric Empirical Bayes (PEB)
Hierarchical models Parametric Hierarchical Empirical model Bayes (PEB) Hierarchical model Restricted Maximimum Likelihood (ReML) Single-level model
Bayes Rule
Example 2:Univariate model Likelihood and Prior Posterior Relative Precision Weighting
Example 2:Multivariate two-level model Likelihood and Prior Data-determined parameters Assume diagonal precisions Posterior Precisions Assume Shrinkage Prior
Covariance constraints General Case: Arbitrary error covariances Covariance constraints
General Case EM algorithm Friston, K. et al. (2002), Neuroimage ( ) å E-Step ( ) y C X T 1 - = e q h M-Step r for i and j { } { Q tr J g i j ij k å + l Friston, K. et al. (2002), Neuroimage
Pooling assumption Decompose error covariance at each voxel, i, into a voxel specific term, r(i), and voxel-wide terms.
What’s new in SPM2 ? Corrections for Non-Sphericity Posterior Probability Maps (PPMs) Haemodynamic modelling Dynamic Causal Modelling (DCM)
Non-sphericity Relax assumption that errors are Independent and Identically Distributed (IID) Non-independent errors eg. repeated measures within subject Non-identical errors eg. unequal condition/subject error variances Correlation in fMRI time series Allows multiple parameters at 2nd level ie. RFX
Single-subject contrasts from Group FFX PET Verbal Fluency SPMs,p<0.001 uncorrected Single-subject contrasts from Group FFX Non-identical error variances Sphericity Non-sphericity
Correlation in fMRI time series Model errors for each subject as AR(1) + white noise.
The Interface PEB OLS Parameters Parameters, and REML Hyperparameters No Priors Shrinkage priors
Bayesian estimation: Two-level model 1st level = within-voxel Likelihood Shrinkage Prior 2nd level = between-voxels
Bayesian Inference: Posterior Probability Maps PPMs Posterior Likelihood Prior SPMs
SPMs and PPMs
Sensitivity
Spatio-temporal modelling of PET data Simulated data Spatio-temporal modelling of PET data Real data (Word fluency)
The hemodynamic model
Hemodynamics
Inference with MISO models fMRI study of attention to visual motion
Dynamical Causal Models Functional integration and the modulation of specific pathways V1 V4 BA37 STG BA39 Cognitive set - u2(t) {e.g. semantic processing} Stimuli - u1(t) {e.g. visual words}
Extension to a MIMO system The bilinear model neuronal changes intrinsic connectivity induced response Input u(t) activity x1(t) x3(t) x2(t) hemodynamics response y(t)=(X) Hemodynamic model
Dynamical systems theory Connections {A,B,C} Inputs u(t) Kernels () Outputs y(t) EM algorithm E-Step M-Step Connectivity constraints C Inference p() > Bayesian Inference