The Molecular Basis of Inheritance

Slides:



Advertisements
Similar presentations
DNA The Molecule of Life.
Advertisements

The Molecular Basis of Inheritance
Chapter 16.  In 1953, James Watson and Francis Crick introduced a double-helical model for the structure of deoxyribonucleic acid, or DNA  Hereditary.
Chapter 16: Molecular Basis of Inheritance. DNA is the genetic material Early in the 20th century, the identification of the molecules of inheritance.
The Molecular Basis of Inheritance
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 16 – Replication of DNA We’ve spent the last few chapters taking about.
DNA Replication: A Closer Look
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Basic Principle: Base Pairing to a Template Strand Since the two strands of.
The MOLECULAR BASIS OF INHERITANCE
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings.
Fig Figure 16.1 How was the structure of DNA determined?
THE MOLECULAR BASIS OF INHERITANCE
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA Replication chapter 16 continue DNA Replication a closer look p.300 DNA: Origins.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
-Structure of DNA -Steps of replication -Difference between replication, transcription, & translation -How DNA is packaged into a chromosome CHAPTER 16.
DNA Structure & Replication AP Biology. What is a Nucleotide?
THE MOLECULAR BASIS OF INHERITANCE Chapter 16. THE SEARCH FOR GENETIC MATERIAL Frederick Griffith (1928) – something changed normal cells into pneumonia.
16.2 DNA Replication.
Chapter 16: DNA Structure and Function n The history of early research leading to discovery of DNA as the genetic material, the structure of DNA, and its.
Evidence That DNA Can Transform Bacteria The discovery of the genetic role of DNA began with research by Frederick Griffith in 1928 Griffith worked with.
Maurice Wilkins and Rosalind Franklin: X-ray crystallography DNA was helical in shape and the width of the helix was discovered (2nm). Copyright © 2002.
Chromosomes Chromosome Supercoils Coils Nucleosome Histones DNA double helix.
DNA Replication Lecture 11 Fall Read pgs
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Molecular Basis of Inheritance
Fig DNA is the genetic material Since Ancient Greece, people have speculated about how we inherit traits from our parents Early in the 20th century,
DNA REPLICATION C T A A T C G GC A CG A T A T AT T A C T A 0.34 nm 3.4 nm (a) Key features of DNA structure G 1 nm G (c) Space-filling model T.
DNA: The Molecule of Heredity Chemical nature of DNA –Chromosomes are composed of protein and deoxyribonucleic acid –Gene – functional segment of DNA located.
The Molecular Basis of Inheritance.  Your DNA – contained in 46 chromosomes you inherited from your parents in mitochondria you inherited from your mother.
Chapter 16.2 DNA Replication and Repair. Recap Nitrogen base pairings A – T C – G Adenine and Guanine are purines -2 rings Cytosine and Thymine are pyrimidines.
The Molecular Basis of Inheritance
DNA Replication DNA → RNA → Protein replication
Animation: Origins of Replication
Overview: Life’s Operating Instructions
The Molecular Basis of Inheritance
General Animal Biology
DNA and Replication.
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
Overview: Life’s Operating Instructions
Overview: Life’s Operating Instructions
Overview: Life’s Operating Instructions
Chapter 16 DNA.
(a) Key features of DNA structure (c) Space-filling model
The Molecular Basis of Inheritance
Mixture of heat-killed S cells and living R cells
The Molecular Basis of Inheritance
DNA Replication.
The Basic Principle: Base Pairing to a Template Strand
Single-strand binding protein Overall directions of replication
The Molecular Basis of Inheritance
Chapter 16 The Molecular Basis of Inheritance.
DNA: The Molecular Basis of Inheritance
5 end 3 end 3 end 5 end Hydrogen bond 3.4 nm 1 nm 0.34 nm (a)
Chapter 13 DNA Replication.
DO NOW: Is it a hydrolysis or dehydration synthesis
Overview: Life’s Operating Instructions
DNA Replication In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA,
DNA and Replication.
DNA REPLICATION.
Lecture 24: DNA replication
DNA: The Molecule of Heredity
DNA replication Chapter 16.
The Molecular Basis of Inheritance
DNA: The Molecular Basis of Inheritance
Chapter The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
Presentation transcript:

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance

Overview: Life’s Operating Instructions In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA, the substance of inheritance, is the most celebrated molecule of our time Hereditary information is encoded in DNA and reproduced in all cells of the body This DNA program directs the development of biochemical, anatomical, physiological, and (to some extent) behavioral traits Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Fig. 16-1 Figure 16.1 How was the structure of DNA determined?

When mixing heat-killed remains of the pathogenic strain with living cells of the harmless strain, some living cells became pathogenic This phenomenon is called transformation, now defined as a change in genotype and phenotype due to assimilation of foreign DNA Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

EXPERIMENT RESULTS Mixture of heat-killed S cells and living R cells Fig. 16-2 Mixture of heat-killed S cells and living R cells EXPERIMENT Living S cells (control) Living R cells (control) Heat-killed S cells (control) RESULTS Figure 16.2 Can a genetic trait be transferred between different bacterial strains? Mouse dies Mouse healthy Mouse healthy Mouse dies Living S cells

Additional Evidence That DNA Is the Genetic Material It was known that DNA is a polymer of nucleotides, each consisting of a nitrogenous base, a sugar, and a phosphate group In 1950, Erwin Chargaff reported that DNA composition varies from one species to the next This evidence of diversity made DNA a more credible candidate for the genetic material Animation: DNA and RNA Structure Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Chargaff’s rules state that in any species there is an equal number of A and T bases, and an equal number of G and C bases Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Sugar–phosphate backbone 5 end Sugar (deoxyribose) 3 end Fig. 16-5 Sugar–phosphate backbone 5 end Nitrogenous bases Thymine (T) Adenine (A) Figure 16.5 The structure of a DNA strand Cytosine (C) Phosphate DNA nucleotide Sugar (deoxyribose) 3 end Guanine (G)

5 end Hydrogen bond 3 end 1 nm 3.4 nm 3 end 0.34 nm 5 end Fig. 16-7a 5 end Hydrogen bond 3 end 1 nm 3.4 nm Figure 16.7 The double helix 3 end 0.34 nm 5 end (a) Key features of DNA structure (b) Partial chemical structure

The adenine (A) paired only with thymine (T), and guanine (G) paired only with cytosine (C) The Watson-Crick model explains Chargaff’s rules: in any organism the amount of A = T, and the amount of G = C Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Adenine (A) Thymine (T) Guanine (G) Cytosine (C) Fig. 16-8 Figure 16.8 Base pairing in DNA Guanine (G) Cytosine (C)

Concept 16.2: Many proteins work together in DNA replication and repair The relationship between structure and function is manifest in the double helix Watson and Crick noted that the specific base pairing suggested a possible copying mechanism for genetic material Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

The Basic Principle: Base Pairing to a Template Strand Since the two strands of DNA are complementary, each strand acts as a template for building a new strand in replication In DNA replication, the parent molecule unwinds, and two new daughter strands are built based on base-pairing rules Animation: DNA Replication Overview Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

A T C G T A A T G C (a) Parent molecule Fig. 16-9-1 Figure 16.9 A model for DNA replication: the basic concept

(b) Separation of strands Fig. 16-9-2 A T A T C G C G T A T A A T A T G C G C (a) Parent molecule (b) Separation of strands Figure 16.9 A model for DNA replication: the basic concept

(b) Separation of strands Fig. 16-9-3 A T A T A T A T C G C G C G C G T A T A T A T A A T A T A T A T G C G C G C G C (a) Parent molecule (b) Separation of strands (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand Figure 16.9 A model for DNA replication: the basic concept

Animation: Origins of Replication Getting Started Replication begins at special sites called origins of replication, where the two DNA strands are separated, opening up a replication “bubble” A eukaryotic chromosome may have hundreds or even thousands of origins of replication Replication proceeds in both directions from each origin, until the entire molecule is copied Animation: Origins of Replication Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Parental (template) strand Fig. 16-12a Origin of replication Parental (template) strand Daughter (new) strand Replication fork Double-stranded DNA molecule Replication bubble 0.5 µm Two daughter DNA molecules Figure 16.12 Origins of replication in E. coli and eukaryotes (a) Origins of replication in E. coli

Double-stranded DNA molecule Fig. 16-12b Origin of replication Double-stranded DNA molecule Parental (template) strand Daughter (new) strand 0.25 µm Bubble Replication fork Figure 16.12 Origins of replication in E. coli and eukaryotes Two daughter DNA molecules (b) Origins of replication in eukaryotes

At the end of each replication bubble is a replication fork, a Y-shaped region where new DNA strands are elongating Helicases are enzymes that untwist the double helix at the replication forks Single-strand binding protein binds to and stabilizes single-stranded DNA until it can be used as a template Topoisomerase corrects “overwinding” ahead of replication forks by breaking, swiveling, and rejoining DNA strands Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Single-strand binding proteins Fig. 16-13 Primase Single-strand binding proteins 3 Topoisomerase 5 3 RNA primer Figure 16.13 Some of the proteins involved in the initiation of DNA replication 5 5 3 Helicase

The initial nucleotide strand is a short RNA primer DNA polymerases cannot initiate synthesis of a polynucleotide; they can only add nucleotides to the 3 end The initial nucleotide strand is a short RNA primer Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

An enzyme called primase can start an RNA chain from scratch and adds RNA nucleotides one at a time using the parental DNA as a template The primer is short (5–10 nucleotides long), and the 3 end serves as the starting point for the new DNA strand Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Nucleoside triphosphate Fig. 16-14 New strand 5 end Template strand 3 end 5 end 3 end Sugar A T A T Base Phosphate C G C G G C G C DNA polymerase 3 end A T A Figure 16.14 Incorporation of a nucleotide into a DNA strand T 3 end C Pyrophosphate C Nucleoside triphosphate 5 end 5 end

Antiparallel Elongation The antiparallel structure of the double helix (two strands oriented in opposite directions) affects replication DNA polymerases add nucleotides only to the free 3end of a growing strand; therefore, a new DNA strand can elongate only in the 5 to 3direction Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Animation: Leading Strand Along one template strand of DNA, the DNA polymerase synthesizes a leading strand continuously, moving toward the replication fork Animation: Leading Strand Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Animation: Lagging Strand To elongate the other new strand, called the lagging strand, DNA polymerase must work in the direction away from the replication fork The lagging strand is synthesized as a series of segments called Okazaki fragments, which are joined together by DNA ligase Animation: Lagging Strand Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Overall directions of replication Fig. 16-16a Overview Origin of replication Leading strand Lagging strand Lagging strand 2 1 Leading strand Figure 16.6 Synthesis of the lagging strand Overall directions of replication

Table 16-1

Single-strand binding protein Overall directions of replication Fig. 16-17 Overview Origin of replication Leading strand Lagging strand Leading strand Lagging strand Single-strand binding protein Overall directions of replication Helicase Leading strand 5 DNA pol III 3 3 Primer Primase 5 Parental DNA 3 Figure 16.17 A summary of bacterial DNA replication DNA pol III Lagging strand 5 DNA pol I DNA ligase 4 3 5 3 2 1 3 5

Proofreading and Repairing DNA DNA polymerases proofread newly made DNA, replacing any incorrect nucleotides In mismatch repair of DNA, repair enzymes correct errors in base pairing DNA can be damaged by chemicals, radioactive emissions, X-rays, UV light, and certain molecules (in cigarette smoke for example) In nucleotide excision repair, a nuclease cuts out and replaces damaged stretches of DNA Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Nuclease DNA polymerase DNA ligase Fig. 16-18 Figure 16.18 Nucleotide excision repair of DNA damage DNA ligase

Eukaryotic chromosomal DNA molecules have at their ends nucleotide sequences called telomeres Telomeres do not prevent the shortening of DNA molecules, but they do postpone the erosion of genes near the ends of DNA molecules It has been proposed that the shortening of telomeres is connected to aging Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

If chromosomes of germ cells became shorter in every cell cycle, essential genes would eventually be missing from the gametes they produce An enzyme called telomerase catalyzes the lengthening of telomeres in germ cells Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

The shortening of telomeres might protect cells from cancerous growth by limiting the number of cell divisions There is evidence of telomerase activity in cancer cells, which may allow cancer cells to persist Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Concept 16.3 A chromosome consists of a DNA molecule packed together with proteins The bacterial chromosome is a double-stranded, circular DNA molecule associated with a small amount of protein Eukaryotic chromosomes have linear DNA molecules associated with a large amount of protein In a bacterium, the DNA is “supercoiled” and found in a region of the cell called the nucleoid Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Animation: DNA Packing Chromatin is a complex of DNA and protein, and is found in the nucleus of eukaryotic cells Histones are proteins that are responsible for the first level of DNA packing in chromatin For the Cell Biology Video Cartoon and Stick Model of a Nucleosomal Particle, go to Animation and Video Files. Animation: DNA Packing Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Nucleosomes, or “beads on a string” (10-nm fiber) Fig. 16-21a Nucleosome (10 nm in diameter) DNA double helix (2 nm in diameter) H1 Histone tail Histones Figure 16.21a Chromatin packing in a eukaryotic chromosome DNA, the double helix Histones Nucleosomes, or “beads on a string” (10-nm fiber)

Looped domains (300-nm fiber) Metaphase chromosome Fig. 16-21b Chromatid (700 nm) 30-nm fiber Loops Scaffold 300-nm fiber Figure 16.21b Chromatin packing in a eukaryotic chromosome Replicated chromosome (1,400 nm) 30-nm fiber Looped domains (300-nm fiber) Metaphase chromosome

Loosely packed chromatin is called euchromatin Most chromatin is loosely packed in the nucleus during interphase and condenses prior to mitosis Loosely packed chromatin is called euchromatin During interphase a few regions of chromatin (centromeres and telomeres) are highly condensed into heterochromatin Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Sugar-phosphate backbone Fig. 16-UN2 G C A T T A Nitrogenous bases G C Sugar-phosphate backbone C G A T C G Hydrogen bond T A