The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance
Overview: Life’s Operating Instructions In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA, the substance of inheritance, is the most celebrated molecule of our time Hereditary information is encoded in DNA and reproduced in all cells of the body This DNA program directs the development of biochemical, anatomical, physiological, and (to some extent) behavioral traits Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Fig. 16-1 Figure 16.1 How was the structure of DNA determined?
When mixing heat-killed remains of the pathogenic strain with living cells of the harmless strain, some living cells became pathogenic This phenomenon is called transformation, now defined as a change in genotype and phenotype due to assimilation of foreign DNA Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
EXPERIMENT RESULTS Mixture of heat-killed S cells and living R cells Fig. 16-2 Mixture of heat-killed S cells and living R cells EXPERIMENT Living S cells (control) Living R cells (control) Heat-killed S cells (control) RESULTS Figure 16.2 Can a genetic trait be transferred between different bacterial strains? Mouse dies Mouse healthy Mouse healthy Mouse dies Living S cells
Additional Evidence That DNA Is the Genetic Material It was known that DNA is a polymer of nucleotides, each consisting of a nitrogenous base, a sugar, and a phosphate group In 1950, Erwin Chargaff reported that DNA composition varies from one species to the next This evidence of diversity made DNA a more credible candidate for the genetic material Animation: DNA and RNA Structure Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Chargaff’s rules state that in any species there is an equal number of A and T bases, and an equal number of G and C bases Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Sugar–phosphate backbone 5 end Sugar (deoxyribose) 3 end Fig. 16-5 Sugar–phosphate backbone 5 end Nitrogenous bases Thymine (T) Adenine (A) Figure 16.5 The structure of a DNA strand Cytosine (C) Phosphate DNA nucleotide Sugar (deoxyribose) 3 end Guanine (G)
5 end Hydrogen bond 3 end 1 nm 3.4 nm 3 end 0.34 nm 5 end Fig. 16-7a 5 end Hydrogen bond 3 end 1 nm 3.4 nm Figure 16.7 The double helix 3 end 0.34 nm 5 end (a) Key features of DNA structure (b) Partial chemical structure
The adenine (A) paired only with thymine (T), and guanine (G) paired only with cytosine (C) The Watson-Crick model explains Chargaff’s rules: in any organism the amount of A = T, and the amount of G = C Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Adenine (A) Thymine (T) Guanine (G) Cytosine (C) Fig. 16-8 Figure 16.8 Base pairing in DNA Guanine (G) Cytosine (C)
Concept 16.2: Many proteins work together in DNA replication and repair The relationship between structure and function is manifest in the double helix Watson and Crick noted that the specific base pairing suggested a possible copying mechanism for genetic material Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
The Basic Principle: Base Pairing to a Template Strand Since the two strands of DNA are complementary, each strand acts as a template for building a new strand in replication In DNA replication, the parent molecule unwinds, and two new daughter strands are built based on base-pairing rules Animation: DNA Replication Overview Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
A T C G T A A T G C (a) Parent molecule Fig. 16-9-1 Figure 16.9 A model for DNA replication: the basic concept
(b) Separation of strands Fig. 16-9-2 A T A T C G C G T A T A A T A T G C G C (a) Parent molecule (b) Separation of strands Figure 16.9 A model for DNA replication: the basic concept
(b) Separation of strands Fig. 16-9-3 A T A T A T A T C G C G C G C G T A T A T A T A A T A T A T A T G C G C G C G C (a) Parent molecule (b) Separation of strands (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand Figure 16.9 A model for DNA replication: the basic concept
Animation: Origins of Replication Getting Started Replication begins at special sites called origins of replication, where the two DNA strands are separated, opening up a replication “bubble” A eukaryotic chromosome may have hundreds or even thousands of origins of replication Replication proceeds in both directions from each origin, until the entire molecule is copied Animation: Origins of Replication Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Parental (template) strand Fig. 16-12a Origin of replication Parental (template) strand Daughter (new) strand Replication fork Double-stranded DNA molecule Replication bubble 0.5 µm Two daughter DNA molecules Figure 16.12 Origins of replication in E. coli and eukaryotes (a) Origins of replication in E. coli
Double-stranded DNA molecule Fig. 16-12b Origin of replication Double-stranded DNA molecule Parental (template) strand Daughter (new) strand 0.25 µm Bubble Replication fork Figure 16.12 Origins of replication in E. coli and eukaryotes Two daughter DNA molecules (b) Origins of replication in eukaryotes
At the end of each replication bubble is a replication fork, a Y-shaped region where new DNA strands are elongating Helicases are enzymes that untwist the double helix at the replication forks Single-strand binding protein binds to and stabilizes single-stranded DNA until it can be used as a template Topoisomerase corrects “overwinding” ahead of replication forks by breaking, swiveling, and rejoining DNA strands Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Single-strand binding proteins Fig. 16-13 Primase Single-strand binding proteins 3 Topoisomerase 5 3 RNA primer Figure 16.13 Some of the proteins involved in the initiation of DNA replication 5 5 3 Helicase
The initial nucleotide strand is a short RNA primer DNA polymerases cannot initiate synthesis of a polynucleotide; they can only add nucleotides to the 3 end The initial nucleotide strand is a short RNA primer Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
An enzyme called primase can start an RNA chain from scratch and adds RNA nucleotides one at a time using the parental DNA as a template The primer is short (5–10 nucleotides long), and the 3 end serves as the starting point for the new DNA strand Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Nucleoside triphosphate Fig. 16-14 New strand 5 end Template strand 3 end 5 end 3 end Sugar A T A T Base Phosphate C G C G G C G C DNA polymerase 3 end A T A Figure 16.14 Incorporation of a nucleotide into a DNA strand T 3 end C Pyrophosphate C Nucleoside triphosphate 5 end 5 end
Antiparallel Elongation The antiparallel structure of the double helix (two strands oriented in opposite directions) affects replication DNA polymerases add nucleotides only to the free 3end of a growing strand; therefore, a new DNA strand can elongate only in the 5 to 3direction Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Animation: Leading Strand Along one template strand of DNA, the DNA polymerase synthesizes a leading strand continuously, moving toward the replication fork Animation: Leading Strand Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Animation: Lagging Strand To elongate the other new strand, called the lagging strand, DNA polymerase must work in the direction away from the replication fork The lagging strand is synthesized as a series of segments called Okazaki fragments, which are joined together by DNA ligase Animation: Lagging Strand Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Overall directions of replication Fig. 16-16a Overview Origin of replication Leading strand Lagging strand Lagging strand 2 1 Leading strand Figure 16.6 Synthesis of the lagging strand Overall directions of replication
Table 16-1
Single-strand binding protein Overall directions of replication Fig. 16-17 Overview Origin of replication Leading strand Lagging strand Leading strand Lagging strand Single-strand binding protein Overall directions of replication Helicase Leading strand 5 DNA pol III 3 3 Primer Primase 5 Parental DNA 3 Figure 16.17 A summary of bacterial DNA replication DNA pol III Lagging strand 5 DNA pol I DNA ligase 4 3 5 3 2 1 3 5
Proofreading and Repairing DNA DNA polymerases proofread newly made DNA, replacing any incorrect nucleotides In mismatch repair of DNA, repair enzymes correct errors in base pairing DNA can be damaged by chemicals, radioactive emissions, X-rays, UV light, and certain molecules (in cigarette smoke for example) In nucleotide excision repair, a nuclease cuts out and replaces damaged stretches of DNA Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Nuclease DNA polymerase DNA ligase Fig. 16-18 Figure 16.18 Nucleotide excision repair of DNA damage DNA ligase
Eukaryotic chromosomal DNA molecules have at their ends nucleotide sequences called telomeres Telomeres do not prevent the shortening of DNA molecules, but they do postpone the erosion of genes near the ends of DNA molecules It has been proposed that the shortening of telomeres is connected to aging Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
If chromosomes of germ cells became shorter in every cell cycle, essential genes would eventually be missing from the gametes they produce An enzyme called telomerase catalyzes the lengthening of telomeres in germ cells Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
The shortening of telomeres might protect cells from cancerous growth by limiting the number of cell divisions There is evidence of telomerase activity in cancer cells, which may allow cancer cells to persist Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Concept 16.3 A chromosome consists of a DNA molecule packed together with proteins The bacterial chromosome is a double-stranded, circular DNA molecule associated with a small amount of protein Eukaryotic chromosomes have linear DNA molecules associated with a large amount of protein In a bacterium, the DNA is “supercoiled” and found in a region of the cell called the nucleoid Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Animation: DNA Packing Chromatin is a complex of DNA and protein, and is found in the nucleus of eukaryotic cells Histones are proteins that are responsible for the first level of DNA packing in chromatin For the Cell Biology Video Cartoon and Stick Model of a Nucleosomal Particle, go to Animation and Video Files. Animation: DNA Packing Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Nucleosomes, or “beads on a string” (10-nm fiber) Fig. 16-21a Nucleosome (10 nm in diameter) DNA double helix (2 nm in diameter) H1 Histone tail Histones Figure 16.21a Chromatin packing in a eukaryotic chromosome DNA, the double helix Histones Nucleosomes, or “beads on a string” (10-nm fiber)
Looped domains (300-nm fiber) Metaphase chromosome Fig. 16-21b Chromatid (700 nm) 30-nm fiber Loops Scaffold 300-nm fiber Figure 16.21b Chromatin packing in a eukaryotic chromosome Replicated chromosome (1,400 nm) 30-nm fiber Looped domains (300-nm fiber) Metaphase chromosome
Loosely packed chromatin is called euchromatin Most chromatin is loosely packed in the nucleus during interphase and condenses prior to mitosis Loosely packed chromatin is called euchromatin During interphase a few regions of chromatin (centromeres and telomeres) are highly condensed into heterochromatin Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
Sugar-phosphate backbone Fig. 16-UN2 G C A T T A Nitrogenous bases G C Sugar-phosphate backbone C G A T C G Hydrogen bond T A