Kingdom: Animals Domain Eukarya Domain Bacteria Archaea

Slides:



Advertisements
Similar presentations
Kingdom: Animals Domain Eukarya Domain Bacteria Archaea
Advertisements

THE ANIMAL KINGDOM.
The Animal Kingdom Bio 100 Tri-County Technical College Pendleton, S. C
AP Biology Domain Bacteria Domain Archaea Domain Eukarya Common ancestor Kingdom: Animals Domain Eukarya.
AP Biology Domain Eubacteria Domain Archaea Domain Eukarya Common ancestor Kingdom: Animals Domain Eukarya.
Animals AP Review. List and describe the 3 groups of mollusks. Bivalves: hinged shells, clams, scallops Cephalopods: have tentacles, squid, octopus Gastropods:
Major Animal Phyla Biology 103 Animal Lab.
Domain Eukarya Kingdom Animalia. Coelom? Body cavity - space between digestive tract wall and body wall, surrounded by mesoderm cells, location of organs.
Chapter 25- Intro to Animals. I. Characteristics A. Kingdom Anamalia 1. Multicellular 2. heterotrophic 3. eukaryotic 4. lack cell walls.
The Animal Kingdom What is an animal? Heterotrophic, multicellular eukaryotes No cell walls 2 types of tissue that are only found in animals: nervous.
Domain Eukarya Kingdom Animalia Eukaryotic Multicellular Nucleus with no cell wall Motile at some point Consumer.
The Animal kingdom A Summary of Chapters
Domain Bacteria Domain Archaea Domain Eukarya Common ancestor Kingdom: Animals Domain Eukarya VERTEBRATES!!!
Bird (Aves) Mammal Chordata 2 loop circulatory system Endothermic Fur and milk Arthropod Mollusk EchinodermAnnelida Nematoda Platyhelminthes Cnidarian.
Animal Phyla.
Animal Kingdom. 1.Porifera 2.Cnidaria 3.Worms 1.Platyhelminthes 2.Nematoda 3.Annelida 4.Rotifera 4.Mollusca 5.Echinodermata 6.Arthropoda 7.Chordata 1.
Overview of Animals. Animals are… Eukaryotes Multicellular Consumers.
Kingdom Animalia Characteristics EukaryoticMulticellularHeterotrophic –ingest food Specialized cells –Most have tissues No cell wall Most motile Most.
Animal Evolution Porifera Cnidaria Platyhelminthes spongesjellyfishflatworms roundworms Nematoda MolluscaArthropodaChordata AnnelidaEchinodermata mollusks.
AP Biology Domain Bacteria Domain Archaea Domain Eukarya Common ancestor Kingdom: Animals Complex Eukaryotes.
AP Biology Domain Eubacteria Domain Archaea Domain Eukarya Common ancestor Kingdom: Animals Domain Eukarya.
AP Biology Domain Bacteria Domain Archaea Domain Eukarya Common ancestor Kingdom: Animals Domain Eukarya.
Kingdom: Animals Domain Eukarya Domain Bacteria Archaea Eukarya
ANIMAL EVOLUTION What is an animal? Eukaryotic Multicellular Heterotrophic Organized.
Chapter 33 ~ n Chapter 33 ~ Invertebrates Parazoa n Invertebrates: animals without backbones n Closest lineage to protists n Loose federation of cells.
AP Biology D.N.A Objective: SWBAT explain the origin and diversity of animals  What do you believe are the characteristics that separate animals from.
INTRODUCTION TO ANIMALS Chapter 34. Animal Basics  4 Defining Characteristics  Morphology (animal bodies)  Invertebrates versus vertebrates.
AP Biology Domain Bacteria Domain Archaea Domain Eukarya Common ancestor Kingdom: Animals Domain Eukarya Slide show modified from: Kim Foglia.
Aim #80- What are distinguishing characteristics of various groups of organisms in the animal kingdom?
Objectives Know the main characteristics of animals Know the difference between invertebrate and vertebrates Know examples and characteristics of the.
AP Biology Domain Bacteria Domain Archaea Domain Eukarya Common ancestor Kingdom: Animals Domain Eukarya.
Animal Notes Chapter 25 Notes. Animal notes outline I. Characteristics A. Multicellular eukaryotes B. Movement C. No cell walls D. Heterotroph E. Organ.
AP Biology List of animals  Let ’ s play a game! In order to win, the class must name at least one animal in each of 9 columns. Easy right? We ’ ll see……..
Kingdom Animalia Invertebrates. Cell Type/ Description  Multicellular  Nucleus  Cell Organelles.
Deuterostomia/Coelomate Phylum: Chordata Trends in Chordate Evolution: characteristic features.
Phylum Chordata Invertebrate chordates –Tunicates and lancelets –Have notochord, gill slits Vertebrates –fish, amphibians, reptiles, birds, mammals –internal.
ANIMAL PHYLA. Phylum Porifera The name porifera means “pore-bearing” This phylum consists of the sponges.
Animal Classification. Animals can be classified by what kind of symmetry it has. Radial Symmetry the animal can be divided into equal parts that arranged.
6. Kingdom Animalia. Animal Kingdom Symmetry- having equal proportions Asymmetry- not having equal proportions Bilateral symmetry- having 2 equal halves.
Animals AP Biology Mrs. Ramon Intro. To Animal Evolution What is an animal?  Multicellular, heterotrophic eukaryotes  Lack cell walls  Two unique.
Unit 14 - Animals. Animal Traits Eukaryotes (complex cells with nuclei) Heterotrophs (do not make their own food) Multicellular Motile (can move) Sexual.
Section 26-2 Section 26-3 Animal Characteristics Heterotrophs must ingest others for nutrients Multicellular complex bodies No cell walls allows active.
AP Biology Domain Bacteria Domain Archaea Domain Eukarya Common ancestor Kingdom: Animals Domain Eukarya Slide show modified from: Kim Foglia.
Introduction to Animals Invertebrate Evolution and Diversity
The animal kingdom.
Classifying Animals Chapter 1 Lesson 3.
Kingdom Animalia.
Kingdom: Animals Domain Eukarya Domain Bacteria Archaea
Kingdom: Animals Domain Eukarya Domain Bacteria Archaea
Biology New Bern High School
Kingdom: Animals Domain Eukarya Domain Bacteria Archaea
Kingdom: Animals Domain Eukarya Domain Eubacteria Archaea
Animal Characteristics
Chapter 33 ~ Chapter 33 ~ Invertebrates.
ANIMAL PHYLA.
The Animal Kingdom Of all the kingdoms of organisms, the animal kingdom is the most diverse in appearance. So…. What Is an Animal?
Invertebrate- animal that does not have a backbone
INTRODUCTION TO ANIMALS
THE ANIMAL KINGDOM.
Kingdom: Animals Domain Eukarya Domain Bacteria Archaea
The Wonderful World of Animal Phyla
Kingdom: Animals Domain Eukarya Domain Eubacteria Archaea
The Animal kingdom.
Kingdom: Animals Domain Eukarya Domain Bacteria Archaea
Animal Phyla.
Kingdom: Animals Domain Eukarya Domain Bacteria Archaea
Animal Evolution & Diversity
Kingdom: Animals Domain Eukarya Slide show modified from:
Kingdom: Animals Domain Eukarya Domain Bacteria Archaea
Presentation transcript:

Kingdom: Animals Domain Eukarya 2007-2008 Domain Bacteria Archaea Common ancestor 2007-2008

Animal Characteristics Heterotrophs must ingest others for nutrients Multicellular complex bodies No cell walls allows active movement Sexual reproduction no alternation of generations no haploid gametophyte

Animal Evolution radial bilateral Ancestral Protist Cnidaria Nematoda Annelida Echinodermata Porifera Platyhelminthes Mollusca Arthropoda Chordata sponges jellyfish flatworms roundworms mollusks segmented worms insects spiders starfish vertebrates body & brain size,  mobility backbone redundancy, specialization,  mobility segmentation  body size endoskeleton coelom  digestive sys radial body cavity body complexity  digestive & repro sys bilateral symmetry distinct body plan; cephalization tissues specialized structure & function, muscle & nerve tissue multicellularity specialization &  body complexity bilateral Ancestral Protist

Body Cavity Space for organ system development Coelem acoelomate ectoderm Space for organ system development increase digestive & reproductive systems increase food capacity & digestion increase gamete production Coelem mesoderm & endoderm interact during development allows complex structures to develop in digestive system ex. stomach mesoderm endoderm pseudocoelomate ectoderm mesoderm endoderm pseudocoel coelomate ectoderm mesoderm coelom cavity endoderm protostome vs. deuterostome

Invertebrate: Porifera food taken into each cell by endocytosis Sponges no distinct tissues or organs do have specialized cells no symmetry sessile (as adults)

Invertebrate: Cnidaria Jellyfish, hydra, sea anemone, coral tissues, but no organs two cell layers radial symmetry predators tentacles surround gut opening extracellular digestion release enzymes into gut cavity absorption by cells lining gut polyp medusa

Stinging cells of Cnidarians hydra stinging cell with nematocyst trigger discharged nematocyst undischarged tentacles mouth sensory cell

Invertebrate: Platyhelminthes Flatworms tapeworm, planaria mostly parasitic bilaterally symmetrical have right & left & then have head (anterior) end & posterior end cephalization = development of brain concentration of sense organs in head increase specialization in body plan Animals now face the world head on! ectoderm mesoderm endoderm acoelomate

Invertebrate: Nematoda Roundworms bilaterally symmetrical body cavity pseudocoelom = simple body cavity digestive system tube running through length of body (mouth to anus) many are parasitic hookworm C. elegans

Invertebrate: Mollusca Mollusks slugs, snails, clams, squid bilaterally symmetrical (with exceptions) soft bodies, mostly protected by hard shells true coelem increases complexity & specialization of internal organs

Invertebrate: Annelida Segmented worms earthworms, leeches segments increase mobility redundancy in body sections bilaterally symmetrical true coelem fan worm leech

Invertebrate: Arthropoda Spiders, insects, crustaceans most successful animal phylum bilaterally symmetrical segmented specialized segments allows jointed appendages exoskeleton chitin + protein

Arthropod groups arachnids crustaceans insects 8 legs, 2 body parts spiders, ticks, scorpions crustaceans gills, 2 pairs antennae crab, lobster, barnacles, shrmp insects 6 legs, 3 body parts

Invertebrate: Echinodermata Starfish, sea urchins, sea cucumber radially symmetrical as adults spiny endoskeleton deuterostome loss of bilateral symmetry?

Invertebrate quick check… Invertebrates: Porifera, Cnidaria, Platyhelminthes, Nematoda, Annelida, Mollusca, Arthropoda, Echinodermata Which group includes snails, clams, and squid? Which group is the sponges? Which are the flatworms? …segmented worms? …roundworms? Which group has jointed appendages & an exoskeleton? Which two groups have radial symmetry? What is the adaptive advantage of bilateral symmetry? Which group has no symmetry? Which group includes snails, clams, and squid? Mollusks Which group is the sponges? Porifera Which are the flatworms? Platyhelminthes …segmented worms? Annelids …roundworms? Nematodes Which group has jointed appendages & an exoskeleton? Arthropods Which two groups have radial symmetry? Cnidaria, Echinoderm What is the adaptive advantage of bilateral symmetry? cephalization Which group has no symmetry? Profiera

Oh, look… your first baby picture! Chordata Vertebrates fish, amphibians, reptiles, birds, mammals internal bony skeleton backbone encasing spinal column skull-encased brain deuterostome hollow dorsal nerve cord becomes brain & spinal cord becomes gills or Eustachian tube Oh, look… your first baby picture! pharyngeal pouches becomes vertebrae postanal tail becomes tail or tailbone notochord

Vertebrates: Fish Characteristics body structure body function 450 mya salmon, trout, sharks Vertebrates: Fish Characteristics body structure bony & cartilaginous skeleton jaws & paired appendages (fins) scales body function gills for gas exchange two-chambered heart; single loop blood circulation ectotherms reproduction external fertilization external development in aquatic egg gills body

Transition to Land Evolution of tetrapods Lobe-finned fish Tibia Femur Fibula Humerus Shoulder Radius Ulna Pelvis Lobe-finned fish Early amphibian

Vertebrates: Amphibian 350 mya frogs salamanders toads Vertebrates: Amphibian lung buccal cavity glottis closed Characteristics body structure legs (tetrapods) moist skin body function lungs (positive pressure) & diffusion through skin for gas exchange three-chambered heart; veins from lungs back to heart ectotherms reproduction external fertilization external development in aquatic egg metamorphosis (tadpole to adult)

Vertebrates: Reptiles 250 mya dinosaurs, turtles lizards, snakes alligators, crocodile Vertebrates: Reptiles Characteristics body structure dry skin, scales, armor body function lungs for gas exchange thoracic breathing; negative pressure three-chambered heart ectotherms reproduction internal fertilization external development in amniotic egg embryo leathery shell chorion allantois yolk sac amnion

Vertebrates: Birds (Aves) 150 mya finches, hawk ostrich, turkey Vertebrates: Birds (Aves) Characteristics body structure feathers & wings thin, hollow bone; flight skeleton body function very efficient lungs & air sacs four-chambered heart endotherms reproduction internal fertilization external development in amniotic egg trachea anterior air sacs lung posterior

Vertebrates: Mammals Characteristics body structure body function 220 mya / 65 mya mice, ferret elephants, bats whales, humans Vertebrates: Mammals Characteristics body structure hair specialized teeth body function lungs, diaphragm; negative pressure four-chambered heart endotherms reproduction internal fertilization internal development in uterus nourishment through placenta birth live young mammary glands make milk muscles contract diaphragm contracts

Vertebrates: Mammals Sub-groups monotremes marsupials placental egg-laying mammals lack placenta & true nipples duckbilled platypus, echidna marsupials pouched mammals offspring feed from nipples in pouch short-lived placenta koala, kangaroo, opossum placental true placenta nutrient & waste filter shrews, bats, whales, humans

Vertebrate quick check… Which vertebrates lay eggs with shells? Which vertebrates are covered with scales? What adaptations do birds have for flying? What kind of symmetry do all vertebrates have? Which vertebrates are ectothermic and which are endothermic Why must amphibians live near water? What reproductive adaptations made mammals very successful? What characteristics distinguish the 3 sub-groups of mammals?

That’s the buzz! Any Questions? 2007-2008