Warm Up Find each value. 1. mBCA 2. t Solve for x.

Slides:



Advertisements
Similar presentations
11-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
Advertisements

10-3 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
10-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
Warm Up Find each value. 1. mBCA 2. t Solve for x.
An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle. An intercepted arc consists of endpoints that.
12.3 Inscribed Angles. Vocab: inscribed angle - an angle whose vertex is on a circle and whose sides are chords
Vocabulary inscribed angle intercepted arc subtend.
Section 10.3 Inscribed Angles Geometry April 10, 2004.
Warm – up 2. Inscribed Angles Section 6.4 Standards MM2G3. Students will understand the properties of circles. b. Understand and use properties of central,
10.4.  Inscribed Angle: an angle that has a vertex on the circle. The sides of the angles are chords.  Intercepted Arc: the arc that is contained in.
Geometry Section 10-4 Use Inscribed Angles and Polygons.
Arcs & Angles Chapter 10. Draw & Label Central Angle Minor Arc Major Arc k.
Inscribed angle and intercepted arc
Lesson 8-5: Angle Formulas 1 Bell Ringer 5/27/2010 Find the value of x.
12.3 Inscribed Angles An angle whose vertex is on the circle and whose sides are chords of the circle is an inscribed angle. An arc with endpoints on the.
10.3 Inscribed Angles. Definitions Inscribed Angle – An angle whose vertex is on a circle and whose sides contain chords of the circle Intercepted Arc.
Holt McDougal Geometry 11-4 Inscribed Angles Find the measure of an inscribed angle. Use inscribed angles and their properties to solve problems. Objectives.
Inscribed Angles Section An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle. An intercepted.
Inscribed Angles Inscribed Angles – An angle that has its vertex on the circle and its sides contained in chords of the circle. Intercepted – An angle.
Inscribed Angles Using Inscribed Angles An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.
MM2G3 Students will understand properties of circles. MM2G3 b Understand and use properties of central, inscribed, and related angles. MM2G3 d Justify.
9-4 Inscribed Angles Objectives: To recognize and find measures of inscribed angles. To find properties of inscribed angles.
10-4 Inscribed Angles You found measures of interior angles of polygons. Find measures of inscribed angles. Find measures of angles of inscribed polygons.
Section 9-5 Inscribed Angles. Inscribed angles An angle whose vertex is on a circle and whose sides contain chords of the circle. A B C D are inscribed.
Holt Geometry 11-4 Inscribed Angles 11-4 Inscribed Angles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Objective: Measures of Inscribed Angles & Inscribed Polygons. (3.12.3) Section 10.4.
Section 10-3 Inscribed Angles. Inscribed angles An angle whose vertex is on a circle and whose sides contain chords of the circle. A B D is an inscribed.
GEOMETRY INSCRIBED ANGLES Unit 6-2. Central angles A __________ ____________ is an angle whose vertex is at the center of a circle with sides that are.
Objectives Find the measure of an inscribed angle.
Warm UP Given: Circle O with mAB=35 Find mC O A C B.
12-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
Objectives Find the measure of an inscribed angle.
Vocabulary inscribed angle intercepted arc subtend.
Warm Up(On a Separate SHEET)
Rigor: Find the measure of an inscribed angle and use their properties to solve problems. Relevance: String Art.
12-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
11.4 Inscribed Angles Geometry.
Inscribed Angles.
10.3 Inscribed Angles Unit IIIC Day 5.
15.1 Central Angles and Inscribed Angles
Warm-Up For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1) 2)
12.4 Inscribed Angles.
Inscribed Angles Notes and Examples.
10.4 Vocabulary inscribed angle intercepted arc subtend
Warm Up Find each value. 1. mBCA 2. t 63.5° 116.5°
Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
Warm Up Find each value. 1. mBCA 2. t Solve for x.
Rigor: Find the measure of an inscribed angle and use their properties to solve problems. Relevance: String Art.
Module 19: Lesson 1 Central Angles & Inscribed Angles
11-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
12-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
12-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
12-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
Sec Use Inscribed Angles and Polygons p
Lesson 10-4: Inscribed Angles
EOC No Calculator Packet
Objectives Find the measure of an inscribed angle.
Learning Targets I will find the measure of an inscribed angle.
10.4 Vocabulary inscribed angle intercepted arc subtend
Circles and inscribed angles
Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
Circles Unit 6: Lesson 3 Inscribed Angles Holt Geometry Texas ©2007
Section 10.4 Use Inscribed Angles And Polygons Standard:
Inscribed Angles.
LT 11.5: Use Inscribed Angles and their Properties to Solve Problems
11-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
11-4 Inscribed Angles Warm Up Lesson Presentation Lesson Quiz
Page ) 136.3° 21) 23) 237.7° 25) 152° 27) 155° 29) 147° 31) ) ) False 34) 35) True 38) 136° 39) 108° 9/27/2019 3:49 PM 11-3: Area of.
Presentation transcript:

Warm Up Find each value. 1. mBCA 2. t Solve for x. 3. 58 – x = 4 (x + 7) 4. 2 (x – 8) = 8 63.5° 116.5° 6 12

Objectives Find the measure of an inscribed angle. Use inscribed angles and their properties to solve problems.

An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle. An intercepted arc consists of endpoints that lie on the sides of an inscribed angle and all the points of the circle between them. (the arc between the inscribed angle) A chord or arc subtends an angle if its endpoints lie on the sides of the angle.

Example 1A: Finding Measures of Arcs and Inscribed Angles Find each measure. mPRU Inscribed  Thm. Substitute 118 for mPU. mSP Inscribed  Thm. Substitute 27 for m SRP. Multiply both sides by 2.

Check It Out! Example 1a Find each measure. Inscribed  Thm. Substitute 135 for m ABC. Multiply both sides by 2. mDAE Inscribed  Thm. Substitute 76 for mDE.

Check It Out! Example 2 Find mABD and mBC in the string art. Inscribed  Thm. Substitute. = 43 Inscribed  Thm. Substitute.

Example 3A: Finding Angle Measures in Inscribed Triangles Find a. WZY is a right angle WZY is inscribed in a semicircle. mWZY = 90 Def of rt.  5a + 20 = 90 Substitute 5a + 20 for mWZY. 5a = 70 Subtract 20 from both sides. a = 14 Divide both sides by 5.

Example 3B: Finding Angle Measures in Inscribed Triangles Find mLJM. mLJM = mLKM mLJM and mLKM both intercept LM. 5b – 7 = 3b Substitute the given values. 2b – 7 = 0 Subtract 3b from both sides. 2b = 7 Add 7 to both sides. b = 3.5 Divide both sides by 2. mLJM = 5(3.5) – 7 = 10.5 Substitute 3.5 for b.

Check It Out! Example 3a Find z. 8z – 6 = 90 Substitute. ABC is a right angle ABC is inscribed in a semicircle. mABC = 90 Def of rt.  8z – 6 = 90 Substitute. 8z = 96 Add 6 to both sides. z = 12 Divide both sides by 8.

2x + 3 = 75 – 2x Substitute the given values. Check It Out! Example 3b Find mEDF. mEDF = mEGF mEGF and mEDF both intercept EF. 2x + 3 = 75 – 2x Substitute the given values. 4x = 72 Add 2x and subtract 3 from both sides. x = 18 Divide both sides by 4. mEDF = 2(18) + 3 = 39°

Example 4: Finding Angle Measures in Inscribed Quadrilaterals Find the angle measures of GHJK. Step 1 Find the value of b. mG + mJ = 180 GHJK is inscribed in a . 3b + 25 + 6b + 20 = 180 Substitute the given values. 9b + 45 = 180 Simplify. 9b = 135 Subtract 45 from both sides. b = 15 Divide both sides by 9. Step 2 Find the measure of each angle. mG = 3(15) + 25 = 70 Substitute 15 for b mJ = 6(15) + 20 = 110 in each expression. mK = 10(15) – 69 = 81 mH + mK = 180 H and K are supp. mH + 81 = 180 Substitute 81 for mK. mH = 99 Subtract 81 from both sides

You Try: Find the angle measures of JKLM. Step 1 Find the value of b. mM + mK = 180 JKLM is inscribed in a . 4x – 13 + 33 + 6x = 180 Substitute 10x + 20 = 180 Simplify. 10x = 160 Subtract. x = 16 Divide Step 2 Find the measure of each angle. mM = 4(16) – 13 = 51 Substitute 16 into each expression mK = 33 + 6(16) = 129 mJ = 360 – 252 = 108 Subtract 3 known angles from 360º

Homework Page 776 Exercises 1-11, 50 Show work! Write relationship Substitute values Simplify