Find: Bearing Capacity, qult [lb/ft2]

Slides:



Advertisements
Similar presentations
foundations are generally grouped into two categories:
Advertisements

SHALLOW FOUNDATIONS Spread footings Mat (Raft) foundations Square
BEARING CAPACITY OF SHALLOW FOUNDATIONS of Shallow Foundation
Bearing Capacity of Shallow Foundation
Session 17 – 18 PILE FOUNDATIONS
Bearing Capacity of Shallow Foundations
Session 5 – 6 BEARING CAPACITY OF SHALLOW FOUNDATION
Bearing Capacity ظرفيت باربري.
BEARING CAPACITY OF SOIL Session 3 – 4
PILE FOUNDATIONS UNIT IV.
SOIL MECHANICS AND FOUNDATION ENGINEERING-II (CE 311)
The Engineering of Foundations
FE: Geotechnical Engineering
SHALLOW FOUNDATIONS BY, Babariya Ashish Gondaliya Ronak Gondaliya akshay Javiya hardik
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Find: u [kPa] at point B D C B A Water Sand Silt Aquifer x
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: Lightest Angled Beam
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
AIN NIHLA KAMARUDZAMAN Ext: 8968
Find: Lightest I Beam fy=50,000 [lb/in2] unfactored axial
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: LBC [ft] A Ax,y= ( [ft], [ft])
SHALLOW FOUNDATION Session 5 – 10
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Bearing Capacity of Layered Soils.
Presentation transcript:

Find: Bearing Capacity, qult [lb/ft2] infinite strip footing 3,200 4,800 C) 7,600 D) 8,200 4 [ft] 8 [ft] Clay Find the ultimate bearing capacity, q ‘ultimate’, in pounds per square feet. [pause] In this problem --- γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite strip footing 3,200 4,800 C) 7,600 D) 8,200 4 [ft] 8 [ft] Clay an infinite strip footing 8 feet wide, is buried to a depth of 4 feet beneath the soil surface. γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite strip footing 3,200 4,800 C) 7,600 D) 8,200 4 [ft] 8 [ft] Clay The soil is a stiff clay with the given soil properties. [pause] Since the groundwater table is not mentioned, it is assumed to be very deep. γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing 4 [ft] 8 [ft] Clay We begin by writing out our equation for the ultimate bearing capacity of an infinite strip footing. γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing cohesion term 4 [ft] 8 [ft] Clay This equation sums the resisting forces from cohesion, --- γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing cohesion term wedge 4 [ft] weight term 8 [ft] Clay the wedge weight, --- γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing cohesion term wedge overburden 4 [ft] weight term term 8 [ft] Clay and the overburden, of the soil. In this problem we are neglecting the footing thickness, assuming it to be zero. γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] 8 [ft] Clay We begin by determining which variables we need to calculate. γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc 8 [ft] Clay Let’s begin by solving for the bearing capacity factors, for the cohesion, N sub c, --- γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc 8 [ft] Nγ Clay for the wedge weight, N sub gamma, --- γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc 8 [ft] Nγ Clay and for the overburden weight, N sub q. In a drained condition, --- Nq γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc = (Nq-1) * cot φ 8 [ft] Nγ = 2 * (Nq+1) * tan φ Clay these bearing capacity factors are all a function of the friction angle, phi. Here, I’m using the wedge weight multiplier, N sub gamma, developed by Vesic. Nq = tan2(45+φ/2) * eπ * tanφ γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc = (Nq-1) * cot φ 8 [ft] Nγ = 2 * (Nq+1) * tan φ Clay We first solve for N sub q, the overburden multiplier, --- Nq = tan2(45+φ/2) * eπ * tanφ γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc = (Nq-1) * cot φ 8 [ft] Nγ = 2 * (Nq+1) * tan φ Clay by plugging in our phi value, of 16 degrees, --- Nq = tan2(45+φ/2) * eπ * tanφ γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc = (Nq-1) * cot φ 8 [ft] Nγ = 2 * (Nq+1) * tan φ Clay N sub q equals 4.34. The other two bearing capacity factors are solved --- Nq = tan2(45+φ/2) * eπ * tanφ γT=120 [lb/ft3] = 4.34 OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc = (Nq-1) * cot φ 8 [ft] Nγ = 2 * (Nq+1) * tan φ Clay by plugging in N sub q, and phi. [pause] N sub c equals --- Nq = tan2(45+φ/2) * eπ * tanφ γT=120 [lb/ft3] = 4.34 OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc = (Nq-1) * cot φ = 11.63 8 [ft] Nγ = 2 * (Nq+1) * tan φ Clay 11.63, and N sub gamma equals, --- Nq = tan2(45+φ/2) * eπ * tanφ γT=120 [lb/ft3] = 4.34 OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? ? ? ? 4 [ft] Nc = (Nq-1) * cot φ = 11.63 8 [ft] Nγ = 2 * (Nq+1) * tan φ= 3.06 Clay 3.06. Nq = tan2(45+φ/2) * eπ * tanφ γT=120 [lb/ft3] = 4.34 OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? 4 [ft] Nc = 11.63 8 [ft] Nγ = 3.06 Clay We have now solved our bearing capacity factors. Nq = 4.34 γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite Nq Nc Nγ φ 4 8 12 16 20 24 28 32 1.00 1.43 2.06 2.97 4.34 6.40 9.60 14.72 23.18 5.14 6.19 7.53 9.28 11.63 14.83 19.32 25.80 35.49 0.00 0.34 0.86 1.69 3.06 5.39 9.44 16.72 30.21 strip footing 4 [ft] 8 [ft] Clay As a time saving strategy, it may be helpful to print out a table of these bearing capacity factors at various values of phi. γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite Nq Nc Nγ φ 4 8 12 16 20 24 28 32 1.00 1.43 2.06 2.97 4.34 6.40 9.60 14.72 23.18 5.14 6.19 7.53 9.28 11.63 14.83 19.32 25.80 35.49 0.00 0.34 0.86 1.69 3.06 5.39 9.44 16.72 30.21 strip footing 4 [ft] 8 [ft] Clay Here are the factors we just computed, for the friction angle of 16 degrees. γT=120 [lb/ft3] OCR>1 c=400[lb/ft2] φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? 4 [ft] 8 [ft] Clay We next determine the effective unit weight, and the overburden stress, of the soil. Since the groundwater table is not mentioned, --- γT=120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? 4 [ft] γ’= γT 8 [ft] Clay we’ll set the the effective unit weight equal to the total unit weight,which equals --- γT=120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? 4 [ft] γ’= γT γ’= 120 [lb/ft3] 8 [ft] Clay 120 pounds per cubic feet. [pause] Next, q, the overburden stress, is calculated. In the context of bearing capacity problems, --- γT=120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? 4 [ft] γ’= γT γ’= 120 [lb/ft3] 8 [ft] Clay q is the same as the vertical effective stress calculated in geostatic stress problems, --- γT=120 [lb/ft3] q= σ’v Nc = 11.63 Nγ = 3.06 OCR>1 c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? 4 [ft] γ’= γT γ’= 120 [lb/ft3] 8 [ft] Clay which is equal to the effective unit weight, times the thickness of the soil layer, for all soil layers above the footing base. γT=120 [lb/ft3] q= σ’v Nc = 11.63 q= γ’*h Nγ = 3.06 OCR>1 c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? 4 [ft] γ’= γT γ’= 120 [lb/ft3] 8 [ft] Clay This unit weight value corresponds to the 4 feet of soil above the footing base, which is 120 pounds per cubic foot, --- γT=120 [lb/ft3] q= σ’v Nc = 11.63 q= γ’*h Nγ = 3.06 OCR>1 c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ? ? 4 [ft] γ’= γT γ’= 120 [lb/ft3] 8 [ft] Clay and the height of this soil layer is 4 feet. The overburden stress equals --- γT=120 [lb/ft3] γT=120 [lb/ft3] q= σ’v Nc = 11.63 q= γ’*h Nγ = 3.06 OCR>1 c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing 4 [ft] γ’= γT γ’= 120 [lb/ft3] 8 [ft] Clay 480 pounds per square feet. γT=120 [lb/ft3] q= σ’v Nc = 11.63 q= γ’*h Nγ = 3.06 OCR>1 q= 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing 4 [ft] γ’= γT γ’= 120 [lb/ft3] 8 [ft] Clay Having solved for the effective unit weight and overburden stress, --- γT=120 [lb/ft3] q= σ’v Nc = 11.63 q= γ’*h Nγ = 3.06 OCR>1 q= 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing 4 [ft] 8 [ft] Clay the ultimate bearing capacity due to general shear failure can be computed. The values are plugged in for the --- γT=120 [lb/ft3] γ’= 120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 q = 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing 4 [ft] 8 [ft] Clay cohesion term, --- γT=120 [lb/ft3] γ’= 120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 q = 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing 4 [ft] 8 [ft] Clay wedge weight term, --- γT=120 [lb/ft3] γ’= 120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 q = 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing 4 [ft] 8 [ft] Clay and overburden term. γT=120 [lb/ft3] γ’= 120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 q = 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ft2 lb ft2 lb qult=4,652 +1,469 4 [ft] ft2 lb +2,083 8 [ft] Clay Finally the, bearing capacity computes to, --- γT=120 [lb/ft3] γ’= 120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 q = 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq strip footing ft2 lb ft2 lb qult=4,652 +1,469 4 [ft] ft2 lb +2,083 8 [ft] ft2 lb qult=8,204 Clay 8,204 pounds per square foot. γT=120 [lb/ft3] γ’= 120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 q = 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq 3,200 4,800 C) 7,600 D) 8,200 strip footing ft2 lb ft2 lb qult=4,652 +1,469 4 [ft] ft2 lb +2,083 8 [ft] ft2 lb qult=8,204 Clay Looking at the possible solutions, --- γT=120 [lb/ft3] γ’= 120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 q = 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

Find: Bearing Capacity, qult [lb/ft2] infinite qult=c*Nc + 0.5*γ’*B*Nγ+q*Nq 3,200 4,800 C) 7,600 D) 8,200 strip footing ft2 lb ft2 lb qult=4,652 +1,469 4 [ft] ft2 lb +2,083 8 [ft] ft2 lb qult=8,204 AnswerD Clay the answer is D. γT=120 [lb/ft3] γ’= 120 [lb/ft3] Nc = 11.63 Nγ = 3.06 OCR>1 q = 480 [lb/ft2] c=400[lb/ft2] Nq = 4.34 φ=16˚

( ) ? γclay=53.1[lb/ft3] Index σ’v = Σ γ d H*C σfinal ρcn= log Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘