CHAPTER 8.

Slides:



Advertisements
Similar presentations
R. van Langevelde, A.J. Scholten Philips Research, The Netherlands
Advertisements

Cascode Stage. OUTLINE Review of BJT Amplifiers Cascode Stage Reading: Chapter 9.1.
Design of RF CMOS Low Noise Amplifiers Using a Current Based MOSFET Model Virgínia Helena Varotto Baroncini Oscar da Costa Gouveia Filho.
EE 365 Introduction, Logic Circuits. Digital Logic Binary system -- 0 & 1, LOW & HIGH, negated and asserted. Basic building blocks -- AND, OR, NOT.
CMOS Technology Characterization for Analog and RF Design Author : Behzad Razavi Presenter : Kyungjin Yoo.
Digital logic families
Electric Circuit Capacitors Electric Circuits Capacitors DK 12.
Amplifier Circuit This amplifier circuit DC analysis.
Chapter 13 Small-Signal Modeling and Linear Amplification
EE130/230M Review Session 1.Small Signal Models for MOSFET/BJT 2.MOS Electrostatics.
Part B-3 AMPLIFIERS: Small signal low frequency transistor amplifier circuits: h-parameter representation of a transistor, Analysis of single stage transistor.
S. -L. Jang, Senior Member, IEEE, S. -H. Huang, C. -F. Lee, and M. -H
Comparative Analysis of the RF and Noise Performance of Bulk and Single-Gate Ultra-thin SOI MOSFETs by Numerical Simulation M.Alessandrini, S.Eminente,
Chapter 2 MOS Transistors. 2.2 STRUCTURE AND OPERATION OF THE MOS TRANSISTOR.
Problems on Terminal Resistances Chapter 5. Schedule 153/4TuesdayTerminal Resistance (R B, R C and R E ) L3/4Tuesday small signal model from Cadence,
HW (Also, use google scholar to find one or two well cited papers on symmetric models of MOSFET, and quickly study them.)
Chapter 12 : Field – Effect Transistors 12-1 NMOS and PMOS transistors 12-2 Load-line analysis of a simple NMOS amplifier 12-3 Small –signal equivalent.
Noise in SiGe HBT. outline Basic concepts and terminology about noise Representation of noise in bipolar by linear two- ports RF noise in bipolar –A unified.
Particle motion in the inversion layer NMOS -- p type semiconductor – V GS > V T & saturating V DS.
Veljko Radeka, Sergio Rescia, Gianluigi De Geronimo Instrumentation Division, Brookhaven National Laboratory, Upton, NY Induced Gate Noise in Charge Detection.
CHAPTER INTRODUCTION 6.2 QUASI-STATIC OPERATION.
RF CMOS Low-Phase-Noise LC Oscillator Through Memory Reduction Tail Transistor C. C. Boon, M. A. Do, K. S. Yeo, J. G. Ma, and X. L. Zhang IEEE TRANSACTIONS.
MOSFET Basic FET Amplifiers The MOSFET Amplifier
Chapter 13 Small-Signal Modeling and Linear Amplification
Chapter 13 Small-Signal Modeling and Linear Amplification
CHAPTER 10 AC Power Bipolar Junction Transistors: Operation, Circuit Models, and Applications.
Resistance & Nonlinearity of Diode
Chapter 8: FET Amplifiers
Field Effect Transistors
Chapter 2 MOS Transistors.
Other Transistor Topologies
Load-Line Analysis of Complex Circuits with small signal diode model
Signal Generators Term 8.
Chapter 1: Semiconductor Diodes
Review for Final Exam MOSFET and BJT Basis of amplifiers
Field-Effect Transistors Based on Chapter 11 of the textbook
Analogue Electronic 2 EMT 212
High Frequency Compact Noise Modelling of Multi-Gate MOSFETs
FET Amplifiers.
Device Structure & Simulation
Diode Applications Half wave rectifier and equivalent circuit with piece-wise linear model Ideal Vc Rf vi v i = VM sin (t)
EI205 Lecture 15 Dianguang Ma Fall 2008.
Small-Signal Modeling and Linear Amplification
FET Small Signal Analysis ENGI 242 ELEC 222. March 2003FET Small Signal Bias2 g m at Q.
Sedr42021_0434.jpg Figure 4.34 Conceptual circuit utilized to study the operation of the MOSFET as a small-signal amplifier.
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
ECE 333 Linear Electronics
Chapter 12 : Field – Effect Transistors
Lecture 16 ANNOUNCEMENTS OUTLINE MOS capacitor (cont’d)
Notes on Diodes 1. Diode saturation current:  
Lecture 42: Review of active MOSFET circuits
Lecture 13: Part I: MOS Small-Signal Models
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Chapter 1 and 2 review CMOS Devices and models Fabrication process
Chapter 1: Introduction
Chapter 1 and 2 review CMOS Devices and models Fabrication process
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Two-Port Networks Equivalent Circuits
MOSFETs - An Introduction
Last Lecture – MOS Transistor Review (Chap. #3)
The MOS Transistors, n-well
Chapter 8: FET Amplifiers
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
EMT 182 Analog Electronics I
Lecture #17 (cont’d from #16)
UNIT-1 Introduction to Electrical Circuits
Analysis of Single Stage Amplifiers
Lecture #16 OUTLINE MOSFET ID vs. VGS characteristic
Other Transistor Topologies
Dr. Hari Kishore Kakarla ECE
Presentation transcript:

CHAPTER 8

8.2 A Complete Quasi-Static Model for the Intrinsic Part

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.1 Complete Description of Intrinsic Capacitance Effects 8.2.1a 8.2.1b 8.2.2

6.3 Terminal Currents in Quasi-Static Operation 6.3.4 6.3.5 6.3.6 6.3.7

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.1 Complete Description of Intrinsic Capacitance Effects 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.1 Complete Description of Intrinsic Capacitance Effects 8.2.9 8.2.10 8.2.11 8.2.12

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.2 Small-Signal Equivalent Circuit Topologies

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.2 Small-Signal Equivalent Circuit Topologies 8.2.13 8.2.14 8.2.15 8.2.16

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.2 Small-Signal Equivalent Circuit Topologies 8.2.17 8.2.18 8.2.19a 8.2.19b 8.2.19c 8.2.20

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.2 Small-Signal Equivalent Circuit Topologies

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.2 Small-Signal Equivalent Circuit Topologies

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.2 Small-Signal Equivalent Circuit Topologies

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.3 Evaluation of Capacitances 8.2.21 8.2.22 8.2.23 8.2.24

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.3 Evaluation of Capacitances 8.2.25 8.2.26 8.2.27 8.2.28 8.2.29

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.3 Evaluation of Capacitances 8.2.30 8.2.31a 8.2.31b 8.2.31c 8.2.31d 8.2.31e 8.2.31f 8.2.31g 8.2.31h 8.2.32 8.2.33 8.2.34 8.2.35 8.2.36

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.3 Evaluation of Capacitances Saturation. (VDS = VDS’ , h=0) 8.2.37a~r

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.3 Evaluation of Capacitances

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.3 Evaluation of Capacitances

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.3 Evaluation of Capacitances

6.4.21 6.4.22 6.4.23 6.4.24 6.4.25

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.3 Evaluation of Capacitances

8.3 y-Parameter Models

8.3 y-Parameter Models 8.3.1 8.3.2

8.3 y-Parameter Models 8.3.3 8.3.4

8.3 y-Parameter Models 8.3.5 8.3.6 8.3.7

8.3 y-Parameter Models 8.3.8

8.3 y-Parameter Models

8.3 y-Parameter Models 8.3.9 8.3.10 8.3.11

8.4 Non-Quasi-Static Models

8.4 Non-Quasi-Static Models 8.4.1 Introduction

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model DC (Bias) Excitation 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 8.4.8 8.4.9 8.4.10

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model DC (Bias) Excitation 8.4.11 8.4.12 8.4.13 8.4.14a 8.4.14b 8.4.15a 8.4.15b 8.4.15c 8.4.16 8.4.17

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Time-Varying Excitation 8.4.18 8.4.19 8.4.20 8.4.21 8.4.22 8.4.23 8.4.24 8.4.25 8.4.26 8.4.27 8.4.28

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Small-Signal Excitation 8.4.29 8.4.30

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Small-Signal Excitation 8.4.31 8.4.32 8.4.33 8.4.34 8.4.35 8.4.36 8.4.37 8.4.38

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Small-Signal Excitation 8.4.39 8.4.40 8.4.41 8.4.42 8.4.43

8.4.44 8.4.45 8.4.46 8.4.47 8.4.48

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Complex Exponential Excitation 8.4.51 8.4.52 8.4.53 8.4.49 8.4.50

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Complex Exponential Excitation 8.4.54 8.4.55 8.4.56 8.4.57a 8.4.57b 8.4.58 8.4.59 8.5.60 8.4.61 8.4.62

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Complex Exponential Excitation 8.4.66 8.4.67 8.4.63 8.4.64 8.4.65 a~i

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Complex Exponential Excitation 8.4.68 8.4.69a-c 8.4.69d-f 8.4.69g-j

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Complex Exponential Excitation 8.4.70

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Complex Exponential Excitation

8. 4 Non-Quasi-Static Models. 8. 4 8.4 Non-Quasi-Static Models 8.4.2 A Non-Quasi-Static Strong-Inversion Model Complex Exponential Excitation 8.4.71 8.4.18 8.4.19 8.4.20 8.4.21 8.4.22 8.4.23 8.4.24 8.4.25 8.4.26 8.4.27 8.4.28

8.4.72 8.4.73 8.4.74

8.4 Non-Quasi-Static Models 8.4.4 Model Comparison 8.4.75

8. 4 Non-Quasi-Static Models. 8. 4. 4 Model Comparison. 1 8.4 Non-Quasi-Static Models 8.4.4 Model Comparison 1. Quasi-static model without transcapacitors (Fig 7.19) : 𝜔 0 10 8.4.75

8. 4 Non-Quasi-Static Models. 8. 4. 4 Model Comparison. 2 8.4 Non-Quasi-Static Models 8.4.4 Model Comparison 2. Quasi-static model with transcapacitors (Fig 8.5) : 𝜔 0 3 8.4.75

8. 4 Non-Quasi-Static Models. 8. 4. 4 Model Comparison. 3 8.4 Non-Quasi-Static Models 8.4.4 Model Comparison 3. First-order non-quasi-static model (Fig 8.20) : 𝜔 0 8.4.75

8.5 High-Frequency Noise

8.5 High-Frequency Noise 8.5.1 8.5.2 8.5.3 8.5.4 8.5.5

8.5 High-Frequency Noise

8.5 High-Frequency Noise 8.5.6

8.5 High-Frequency Noise 8.5.7

8.5 High-Frequency Noise

8.6 Considerations in MOSFET Modeling for RF Applications

8. 6 Considerations in MOSFET Modeling for RF Applications 8.6 Considerations in MOSFET Modeling for RF Applications Model Topologies

8. 6 Considerations in MOSFET Modeling for RF Applications 8.6 Considerations in MOSFET Modeling for RF Applications Model Topologies

8. 6 Considerations in MOSFET Modeling for RF Applications 8.6 Considerations in MOSFET Modeling for RF Applications Gate Resistance

8. 6 Considerations in MOSFET Modeling for RF Applications 8.6 Considerations in MOSFET Modeling for RF Applications Transition Frequency 8.6.1 8.6.2

8. 6 Considerations in MOSFET Modeling for RF Applications 8.6 Considerations in MOSFET Modeling for RF Applications Transition Frequency Maximum Frequency of Oscillation 8.6.3 8.6.4 8.6.5

8. 6 Considerations in MOSFET Modeling for RF Applications 8.6 Considerations in MOSFET Modeling for RF Applications Maximum Frequency of Oscillation