M. Kakoulin, S. Redant, G. Thys, S. Verhaegen, G. Franciscatto, B

Slides:



Advertisements
Similar presentations
Design and Testing of a Radiation Hardened 13-bit 80 MS/s Pipeline ADC Implemented in a 90nm Standard CMOS Process B. Vaz, N. Paulino *, J. Goes *, M.
Advertisements

Slide : 1 03-oct-2006AMICSA 2006 summary. Slide : 2 03-oct-2006AMICSA 2006 AMICSA 2006 in numbers 48 participants From 12 countries GR, FR, UK, NE, GE,
RAPID Memory Compiler Evaluation by David Artz
SAAB SPACE 1 The M2 ASIC A mixed analogue/digital ASIC for acquisition and control in data handling systems Olle Martinsson AMICSA, October 2-3, 2006.
1 Power Management for High- speed Digital Systems Tao Zhao Electrical and Computing Engineering University of Idaho.
© IMEC 2010 MIXED SIGNAL RADIATION TOLERANT DESIGN WITH DARE KNUT ASIC.
Cmpe222_04des_rules_ppt.ppt1 VLSI Digital Systems Design Process Enhancements and Design Rules.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
Development process of RHBD cell libraries for advanced SOCs
Access, support and digital libraries for 65nm Sandro Bonacini CERN, PH-ESE dept. CH1211, Geneve 23 Switzerland.
This document is the property of EADS Astrium and Aurelia Microelettronica. - Approved for limited distribution only. No disclosure without written permission.
1 5. Application Examples 5.1. Programmable compensation for analog circuits (Optimal tuning) 5.2. Programmable delays in high-speed digital circuits (Clock.
SEE effects in deep submicron technologies F.Faccio, S.Bonacini CERN-PH/ESE SEE TWEPP2010.
Circuit design with a commercial 0.13  m CMOS technology for high energy physics applications K. Hänsler, S. Bonacini, P. Moreira CERN, EP/MIC.
ATMEL ATF280E Rad Hard SRAM Based FPGA SEE test results Application oriented SEU Sensitiveness Bernard BANCELIN ATMEL Nantes SAS, Aerospace Business Unit.
Radiation Hardness Test Chip Matthias Harter, Peter Fischer Uni Mannheim.
Rad-Tolerant design of all-digital DLL Tuvia Liran ] Ran Ginosar ] Dov Alon ] Ramon-Chips.
Update on the Design Implementation Methodology for the 130nm process Microelecronics User Group meeting TWEPP 2010 – Aachen Sandro Bonacini CERN PH/ESE.
Design tools and foundry access service plans for 65 nm technologies
ESA Workshop: on a harmonized mixed-signal flow Gilles Foucard EN/STI/ECE.
Patricia Gonzalez Divya Akella VLSI Class Project.
RD53 Analog IP blocks WG : developments and plans at CPPM M. Barbero, L. Gallin Martel (LPSC), Dzahini (LPSC), D. Fougeron, R. Gaglione (LAPP), F. Gensolen,
Microelectronics User Group Meeting TWEPP 2013, Perugia, IT 26/9/2013.
TIMELINE FOR PRODUCTION 2  Need to be ready for production end next year  => submission of final mask set ~September 2015  Would like one more iteration.
Motivation for 65nm CMOS technology
Test structures for the evaluation of TowerJazz 180 nm CMOS Imaging Sensor technology  ALICE ITS microelectronics team - CERN.
PIONEERING WITH PASSION ©Tesat-Spacecom GmbH & Co.KG PIONEERING WITH PASSION PROPRIETARY INFORMATION ©Tesat-Spacecom GmbH & Co.KG reserves all rights.
17 nov FEC4_P2 status P.Pangaud ; S.Godiot ; R.Fei ; JP.Luo Remember : P2 from P1 Optimization of Rad-Hard block and SEU tolerance blocs Optimization.
RD53 1.  Full/large demonstrator chip submission ◦ When: 2016 A.Early 2016: If chip must have been fully demonstrated in test beams for TDRs to be made.
LPNHE - Serial links for Control in 65nm CMOS technology - 65nm CMOS - Higher density, less material, less power - Enhanced radiation hardness regular.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
Deep submicron readout chip development on behalf of D. Fougeron, 1 R. Hermel 1, H. Lebbolo 2, R. Sefri, 2 1 LAPP Annecy, 2 LPNHE Paris SiD phone meeting.
1 EE 382M VLSI 1 EE 360R Computer-Aided Integrated Circuit Design Lab 1 Demo Fall 2011 Whitney J. Wadlow.
Introduction to ASICs ASIC - Application Specific Integrated Circuit
Development of SEU-robust, radiation-tolerant and industry-compatible programmable logic components Sandro Bonacini CERN.
Status of DHP prototypes
14NM FINFET IN MICROWIND.
Comparison Study of Bulk and SOI CMOS Technologies based Rad-hard ADCs in Space Feitao Qi , Tao Liu , Hainan Liu , Chuanbin Zeng , Bo Li , Fazhan Zhao.
LVDS Project: A RAD-HARD 500 Mbps LVDS Bus for Space June 12-16, 2016
THE CMOS INVERTER.
Library Characterization
Lecture 19: SRAM.
20-NM CMOS DESIGN.
Hugo França-Santos - CERN
Access to 65nm Technology through CERN
VLSI Design MOSFET Scaling and CMOS Latch Up
Electronics for Physicists
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
CMOS Technology Flow varies with process types & company
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
An Illustration of 0.1µm CMOS layout design on PC
Lecture 19 OUTLINE The MOSFET: Structure and operation
Driving, conditioning and signal acquisition
Design Technologies Custom Std Cell Performance Gate Array FPGA Cost.
Introduction to I/O PAD
Where are we? Lots of Layout issues Line of diffusion style
Design of a ‘Single Event Effect’ Mitigation Technique for Reconfigurable Architectures SAJID BALOCH Prof. Dr. T. Arslan1,2 Dr.Adrian Stoica3.
University of Colorado at Boulder
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
CMOS Technology Flow varies with process types & company
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Electronics for Physicists
DARE180U Platform Improvements in Release 5.6
EE382M VLSI 1 LAB 1 DEMO FALL 2018.
A new family of pixel detectors for high frame rate X-ray applications Roberto Dinapoli†, Anna Bergamaschi, Beat Henrich, Roland Horisberger, Ian Johnson,
DARE180U New Analog IPs Laurent Berti AMICSA 2018, LEUVEN.
Closed Session CMOS Circuit Development Update Investigators: C.K. Ken Yang Dejan Markovic Students: A. Amin,
IC Design methodology and Design styles
ATMX150RHA Circuit Design Platform
Presentation transcript:

The Design Against Radiation Effects (DARE) design platform for TSMC 65nm process. M. Kakoulin, S. Redant, G. Thys, S. Verhaegen, G. Franciscatto, B. Chehab, G. Pollissard, L. Berti AMICSA, 2018

DARE65 DARE65: RAD HARD DESIGN PLATFORM High-performance, cost-effective RH space applications AIP STD cells lib, Memory IP & IO lib ADK (Electrical, LVS, DRC, RAD checks, SETsim) PROCESS (TSMC 65 nm CMOS) Sponsored by:

Commercial TSMC 65 nm LP process - CMN /CRN65LP DARE65 THE DARE65 design platform: PROCESS Deep Nwell option RDL available for Flip-chip MOM or MIM capacitors Dual gate oxide process 1.2V (core)/2.5V(IO) Multiple VT (high VT, standard VT, low VT) 9 Cu metal layers + last metal layer in AL pad Regular MPW shuttle runs Cost effective for low volume MLM runs

DARE65 THE DARE65 design platform: Operating conditions & Hardness goal Parameter Min Typ Max Core voltage, V 1,08 1,2 1,32 IO voltage, V 2,25 2,5 2,75 Temperature, 0C -55 25 +125 TID, krad 100 300 SEL, MeV.cm2/mg 70

DARE65 THE DARE65 design platform: SEU, SET CAPABILITY goal Parameter Min Typ Max High, MeV.cm2/mg 60 Medium, MeV.cm2/mg 25 Basic (non hardened), MeV.cm2/mg 1

65 nm process NMOS core transistor radiation results (RVt) [1] DARE65 THE DARE65 design platform: Mitigation METHODS 65 nm process NMOS core transistor radiation results (RVt) [1] Threshold Drive current Leakage current 1 - Bonacini, P. Valerio, R. Avramidou, R. Ballabriga, F. Faccio, K. Kloukinas and A. Marchioro, 2012 JINST 7 P01015. “Characterization of a commercial 65 nm CMOS technology for SLHC applications

DARE65 THE DARE65 design platform: Mitigation METHODS No SEL is found at room temperature in all SRAM blocks at effective LET 60 MeVxcm2/mg [2]. The SEL occurs in “6T” block only at effective LET 60 MeVxcm2/mg and at high operating temperature [2]. Another test results shows the SEL effect in 65 nm commercial STD cells at even lower LET at high operating temperature (appr. LET 20 MeVxcm2/mg ) SEU cross-section LET dependence for SRAM blocks in 65 nm [2]. 2 - Maxim S. Gorbunov, Member, IEEE, Pavel S. Dolotov, Student Member, IEEE, Andrey A. Antonov, Gennady I. Zebrev, Vladimir V. Emeliyanov, Member, IEEE, Anna B. Boruzdina, Andrey G. Petrov, and Anastasia V. Ulanova (2004, August). Design of 65 nm CMOS SRAM for Space Applications: A Comparative Study.

DARE65 THE DARE65 design platform: Mitigation METHODS Factor TID - No ELT transistors - Limits of the minimum core and IO NMOS and PMOS transistors gate width - 2 limitations are set: for digital designs and for analogue designs (larger W). - Deep N-well - Guard rings prevent leakage between N regions due to TID SEL - n+ and p+ guard rings connected to supply or ground voltages - double contact in source/drain areas of transistors SEU/SET Device spacing – to avoid “double hits” No Hot MOS (i.e. MOS where the bulk is not connected to GND or VDD). Drive Strength Hardening – especially to create SET hardened standard cells. SET filters DICE FF Bit alignment in SRAM blocks – to avoid MBU

DARE65 IMEC ADK Customer analogue IP design THE DARE65 design platform: DARE65T_ADK – Design kit IMEC ADK Customer analogue IP design Schematic RH rules checks (script) Layout RH rules checks (Calibre) SET simulation environment (Striker & prober)

DARE65 THE DARE65 design platform: DARE65T_CORE - STD CELL Library multi-VT (HVt, SVt, LVt) support digital/analogue-on-top & design flow support 12 track library – 0,2 um pitch SET & SEU hardened cells for clock & reset tree SET hardened combinational cells SEU hardened flipflops and latch (DICE) totally 102 cells raw gate density is 344 kGates/mm2 TSMC 9T SC library comparable performance Type N Non-SET hardened combinational cells 52 SET hardened combinational cells - 25 MeV... 7 SET hardened combinational cells - 40 MeV... SET hardened combinational cells - 60 MeV... Non-SET hardened sequential cells 9 SEU hardened sequential cells 2) 5 ANTENNA cells 1 TIEH and TIEL 2 Non-SEU hardened clock gating cells SEU hardened clock gating cells 3 Filler cells 8

DARE65 THE DARE65 design platform: DARE65T_CORE - STD CELL Library DARE65T_CORE DICE and standard non-RH FF

DARE65 THE DARE65 design platform: DARE65T_IO – IO cell library cold-spare feature programmable drive strength slew rate control programmable pull up/down uni / bidirectional 2 kV HBM supports 1,8/2,5V & 3,3 V supply voltage maximum supply voltage 3,63V breaker cells multi power domain support flip-chip support

DARE65 THE DARE65 design platform: DARE65T_IO – SSTL IO cell library SSTL18 cells (RX_SE, RXTX_SE, RX_DIFF, RXTX_DIFF) 1.8V ± 5% supply voltage Defined in JESD8-15A, but visibly not updated and replaced by JESD79-2F (defines ODT, levels vs speed...), the DDR2 standard DDR2-800 support SSTL15 cells (RX_SE, RXTX_SE, RX_DIFF, RXTX_DIFF) 1.5V ± 5% supply voltage Definition embedded in standard of DDR3 (JESD79-3F) Impedance calibration support Configurable delay line DDR3-800 support

DARE65 THE DARE65 design platform: dare65t_lvds – lvds io CELL LIBRARY DARE65T_LVDS transmitter and receiver IO cells based on 2,5 V overdrive 3,3 transistors 2,5 and 3,3 V voltage supply up to 400 Mbps (200 MHz)

DARE65 THE DARE65 design platform: DARE65T_SRAM – MEMORY Custom cell, SEL free SPRAM compiler DPRAM instances DRAM custom cell: 1,9 x 2,75 um2 2 SRAM cells solutions: Conservative SRAM cell With intermittent guard ring, 1,5 times smaller The DARE65 SPRAM cell: 1,9 x 1,85 um2

DARE65 The DARE65 design platform: DARE65T – Analogue IP Analog IP Main features DARE65T_PLL 200-1200 MHz output frequency 2,5-32 MHz reference frequency Supply voltage 1,2V. DARE65_IVREF 1,2V and 2,5 supply voltages 0,6V output reference voltage Reference current output Accuracy (before trimming) ± 2,5 % DARE65_ADC 10 bit resolution Integrated temperature sensor 10 kHz sampling rate. DARE65_POR TBD

DARE65 Test vehicle  platform validation MS capability improvement FURTHER work Test vehicle  platform validation MS capability improvement SerDes: RapidIO, SpaceFiber DDR2/3 PHY High-speed ADC & DAC 3. Memory capability improvement OTP & MRAM memory