Rigid Diatomic molecule

Slides:



Advertisements
Similar presentations
LINEAR MOLECULE ROTATIONAL TRANSITIONS:  J = 4  J = 3  J = 2  J = 1  J = 0.
Advertisements

Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
1 Molecular Hamiltonians and Molecular Spectroscopy.
PY3P05 Lecture 14: Molecular structure oRotational transitions oVibrational transitions oElectronic transitions.
Vibrational Spectroscopy I
Chemistry 6440 / 7440 Vibrational Frequency Calculations.
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Rotational and Vibrational Spectra
Spectroscopy 1: Rotational and Vibrational Spectra CHAPTER 13.
Classical Model of Rigid Rotor
Electron Spin as a Probe for Structure Spin angular momentum interacts with external magnetic fields g e  e HS e and nuclear spins I m Hyperfine Interaction.
Microwave Spectroscopy II
Vibrational Transitions
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Rotational Spectroscopy Born-Oppenheimer Approximation; Nuclei move on potential defined by solving for electron energy at each set of nuclear coordinates.
X-Ray Diffraction Spectroscopy RAMAN Microwave. What is X-Ray Diffraction?
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
Lecture 5: Molecular Physics and Biophysics Comparison with atoms No spherical symmetry  symmetry groups Molecules have three degrees of freedom Electronic,
Microwave Spectroscopy Rotational Spectroscopy
Spectroscopic Analysis Part 4 – Molecular Energy Levels and IR Spectroscopy Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett Water.
Vibrational and Rotational Spectroscopy
Infrared Spectroscopy
Lecture 34 Rotational spectroscopy: intensities. Rotational spectroscopy In the previous lecture, we have considered the rotational energy levels. In.
Revisit vibrational Spectroscopy
MOLECULAR SPECTROSCOPY  SPECTROSCOPY IS THAT BRANCH OF SCIENCE WHICH DEALS WITH THE STUDY OF INTERACTION OF ELECTROMAGNETIC RADIATION WITH MATTER.  ELECTROMAGNETIC.
MOLECULAR SPECTROSCOPY  SPECTROSCOPY IS THAT BRANCH OF SCIENCE WHICH DEALS WITH THE STUDY OF INTERACTION OF ELECTROMAGNETIC RADIATION WITH MATTER.  ELECTROMAGNETIC.
ROTATIONAL SPECTROSCOPY
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Separation of Motion QM. Separation Vibration Rotation.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
H = ½ ω (p 2 + q 2 ) The Harmonic Oscillator QM.
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Bill Madden  = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Square of the transition moment  n  e  m  2 2.Frequency.
ROTATIONAL ENERGIES AND SPECTRA: . LINEAR MOLECULE SPECTRA:  Employing the last equation twice  ΔE= E J+1 – E J = hB(J+1)(J=2) – hBJ(J+1)  Or: ΔE.
IR Spectroscopy Wave length ~ 100 mm to 1 mm
Microwave Spectroscopy Wave length ~ 1 cm to 100  m Wave number ~ 1 to 100 cm -1. Frequency ~ 3 x to 3 x Hz Energy ~ 10 to 1000 Joules/mole.
AClassical Description >E = T + V Harry Kroto 2004.
Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 
Lecture 34 Rotational spectroscopy: intensities (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been.
Schrödinger Equation – Model Systems: We have carefully considered the development of the Schrödinger equation for important model systems – the one, two.
CHM 321:PHYSICAL CHEMISTRY II SPECTROSCOPY. WHAT IS SPECTROSCOPY? ORIGINATED FROM THE STUDY OF VISSIBLE LIGHT DISPERSED ACCORDING TO WAVELENGTH OR INTERACTION.
Chapter 8. Molecular Motion and Spectroscopy
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
MOLECULAR SPECTROSCOPY
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
RAMAN SPECTROSCOPY THREE EFFECTS OF RADIATION OF LIGHT ON MOLECULES CAN OCCUR. (i) RADIATION OF LIGHT ON TO MOLECULES, SOME OF THE LIGHT WILL BE REFLECTED.
Chemistry 213 Practical Spectroscopy
Molecular Spectroscopy
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
Molecular Spectroscopy
UNIT IV Molecules.
International Symposium on Molecular Spectroscopy
The Born-Oppenheimer Separation
الفصل 1: الحركة الدورانية Rotational Motion
Rotational and Vibrational Spectra
Einstein Coefficients
U line procedure DeltaF(J) = 2B(J+1) separations =2B (MHz)
Microwave Spectroscopy Rotational Spectroscopy
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
Molecules Harry Kroto 2004.
CO Laboratory rotational infrared spectrum
Molecular Spectra By – P.V.Koshti.
How do I get experimental information on bond lengths in simple
Consider the transition Ar (3p)6, 1S0 → Ar (3p)5 (4p), 1P1
Recall that for purely rotational transitions to occur, a molecule
Far infrared rotational spectrum of CO J= B
Rotational Energy Levels for rigid rotor: Where Rotational Spectra of Rigid Diatomic molecule. BY G JANAKIRAMAN EGS A&S COLLAGE
Vibrational Energy Levels
The Rigid Rotor.
Presentation transcript:

Rigid Diatomic molecule I = r2  = m1m2/(m1+m2) B (MHz) = 505391/I (u Å 2) B (cm-1) = 16.863/I (u A2) Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F (J) = 2B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

B(J+1)(J+2) J+1 BJ(J+1) J F(J) = 2B(J+1) Harry Kroto 2004

Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 14B 6 42B 12B 5 30B 10B 4 20B 8B 3 12B 6B 2 6B 4B 1 2B 2B Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

Far infrared rotational spectrum of CO J= 12 15 20B 10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 10 J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

My ABC System of Spectroscopy Harry Kroto 2004

Nuclear Energies H + H E(r) Chemical Energies r  v=3 2 1 r  Harry Kroto 2004

Rotational Spectroscopy Harry Kroto 2004

Nuclear Energies H + H E(r) Chemical Energies Rotational levels r  r  Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

m2 m1 Rotational Spectra Linear Molecules Rigid Diatomic molecule E = ½I2 Rigid Diatomic molecule Angular velocity  m2 m1 I = r2 = m1m2/(m1+m2) Harry Kroto 2004

Rotational Energy Linear Diatomic Molecules Rigid Diatomic molecule Angular velocity  m2 Rotational Energy Linear Diatomic Molecules E = ½I2 m1 I = r2 = m1m2/(m1+m2) Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

Rotational Spectra Linear Molecules E = ½I2  J2/2I (J = I ) E = ½ mv2  p2/2m (p = mv) H = J2/2I (Note V= 0) Harry Kroto 2004

Rotational Spectra Linear Molecules E = ½I2  J2/2I (J = I ) E = ½ mv2  p2/2m (p = mv) H = J2/2I (Note V= 0) Harry Kroto 2004

H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1) F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1) F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1) F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1) F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

H = J2/2I J J2 J  = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1) F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J   J* J2 Jd Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( J= 12 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

Radiotelescope in Canada Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

B(J+1)(J+2) – D(J+1)2(J+2)2 J+1 BJ(J+1) – DJ2(J+1)2 J F(J) = 2B(J+1) – 4D(J+1)3 Harry Kroto 2004

A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J  = E J  H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I =  r2  = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004

Harry Kroto 2004