Accuracy and test–retest precision of quantitative cartilage morphology on a 1.0T peripheral magnetic resonance imaging system  D. Inglis, Ph.D., M. Pui,

Slides:



Advertisements
Similar presentations
Efficacy of ultrasound therapy for the management of knee osteoarthritis: a systematic review with meta-analysis A. Loyola-Sánchez, J. Richardson, N.J.
Advertisements

Lars A. Ewell, Christopher J. Watchman, Kurt Wharton 
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
T1ρ relaxation time of the meniscus and its relationship with T1ρ of adjacent cartilage in knees with acute ACL injuries at 3T  R.I. Bolbos, Ph.D., T.M.
E. Schneider, Ph. D. , M. NessAiver, Ph. D. , D. White, Ph. D. , D
Two year longitudinal change and test–retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative  F. Eckstein, M.D.,
Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral.
The relationships between bone mineral density in the spine, hip, distal femur and proximal tibia and medial minimum joint space width in the knees of.
Osteoarthritis and Cartilage
Isotropic three-dimensional T2 mapping of knee cartilage with T2-prepared segmented gradient ECHO at 3T  R. Colotti, P. Omoumi, R.B. van Heeswijk  Osteoarthritis.
Knee effusion-synovitis volume measurement and effects of vitamin D supplementation in patients with knee osteoarthritis  X. Wang, F. Cicuttini, X. Jin,
Osteoarthritis as a disease of mechanics
Bone marrow lesions on magnetic resonance imaging in hand osteoarthritis are associated with pain and interact with synovitis  R. Liu, W. Damman, M. Reijnierse,
Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC  J.E. Kurkijärvi,
A longitudinal study of the quantitative evaluation of patella cartilage after total knee replacement by delayed gadolinium-enhanced magnetic resonance.
Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions  E. Schneider, M.
J. Duryea, Ph. D. , G. Neumann, M. D. , M. H. Brem, M. D. , W. Koh, M
Osteoarthritis year 2011 in review: biochemical markers of osteoarthritis: an overview of research and initiatives  Y. Henrotin  Osteoarthritis and Cartilage 
A new non-invasive method to assess synovitis severity in relation to symptoms and cartilage volume loss in knee osteoarthritis patients using MRI  J.-P.
F. Zhang, S. M. Bierma-Zeinstra, E. H. G. Oei, A. Turkiewicz, M
Validation of cartilage volume and thickness measurements in the human shoulder with quantitative magnetic resonance imaging  H Graichen, M.D., J Jakob,
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
Comparison between semiquantitative and quantitative methods for the assessment of knee synovitis in osteoarthritis using non-enhanced and gadolinium-enhanced.
Efficacy and safety of intraarticular hyaluronic acid in the treatment of hip osteoarthritis: a systematic review  J.C. Fernández López, M.D., Ph.D.,
Prevalence of radiographic hip osteoarthritis and its association with hip pain in Japanese men and women: the ROAD study  T. Iidaka, S. Muraki, T. Akune,
Between-group differences in infra-patellar fat pad size and signal in symptomatic and radiographic progression of knee osteoarthritis vs non-progressive.
Time to be positive about negative data?
Bone-seeking superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic resonance imaging of bone turnover in early osteoarthritis  A. Panahifar,
Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading  E.B. Dam, Ph.D., J. Folkesson, M.Sc.,
Synovial volume vs synovial measurements from dynamic contrast enhanced MRI as measures of response in osteoarthritis  A.D. Gait, R. Hodgson, M.J. Parkes,
D. J. Hunter, D. P. Beavers, F. Eckstein, A. Guermazi, R. F. Loeser, B
J. Avouac, M.D., L. Gossec, M.D., M. Dougados, M.D. 
Intra- and inter-observer reproducibility of volume measurement of knee cartilage segmented from the OAI MR image set using a novel semi-automated segmentation.
Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis – part I  M. Bouchgua, D.M.V., K. Alexander, D.M.V., M.Sc., Dipl. A.C.V.R.,
Stem cell therapy for human cartilage defects: a systematic review
S. Sonne-Holm, M.D., Dr. Sci., S. Jacobsen, M.D. 
Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients.
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
A. A. Qazi, M. Sc. , J. Folkesson, M. Sc. , P. C. Pettersen, M. D. , M
Natural history of cartilage damage and osteoarthritis progression on magnetic resonance imaging in a population-based cohort with knee pain  J. Cibere,
Two-year change in cartilage thickness on quantitative magnetic resonance imaging (qMRI) and joint space width (JSW) on X-ray demonstrate similar predictive.
Osteoarthritis and Cartilage
Dr J. H. Naish, Ph. D. , Dr E. Xanthopoulos, Ph. D. , Dr C. E
A graphic user interface for the evaluation of knee osteoarthritis (GEKO): an open- source tool for histological grading  H.E. Kloefkorn, B.Y. Jacobs,
Measurement properties of the WOMAC LK 3.1 pain scale
Comments on Beattie et al
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
Who should have a joint replacement? A plea for more ‘phronesis’
Volumetric bone mineral density of the tibia is not increased in subjects with radiographic knee osteoarthritis  M. Abdin-Mohamed, M.B.B.S., M.R.C.P.,
Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection  M.-A.
Magnetic resonance imaging in osteoarthritis: which method best reflects synovial membrane inflammation?  D. Loeuille, A.-C. Rat, J.-C. Goebel, J. Champigneulle,
A novel method for assessing signal intensity within infrapatellar fat pad on MR images in patients with knee osteoarthritis  M. Lu, Z. Chen, W. Han,
D.J. Hunter  Osteoarthritis and Cartilage 
Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients.
Synovitis and the risk of knee osteoarthritis: the MOST Study
3D modelling of the hip joint from clinical imaging data
C. Ratzlaff, M. Koehoorn, J. Cibere, J. Kopec 
I. G. Otterness, Ph. D. , M. -P. H. Le Graverand, M. D. , Ph. D. , F
Osteoarthritis year 2012 in review: biology
Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen.
Thigh muscle cross-sectional areas and strength in knees with early vs knees without radiographic knee osteoarthritis: a between-knee, within-person comparison 
CT imaging for evaluation of calcium crystal deposition in the knee: initial experience from the Multicenter Osteoarthritis (MOST) study  D. Misra, A.
The association of meniscal damage with joint effusion in persons without radiographic osteoarthritis: the Framingham and MOST osteoarthritis studies 
Osteoarthritis year in review 2016: mechanics
Examining a whole-organ magnetic resonance imaging scoring system for osteoarthritis of the knee using Rasch analysis  P.G. Conaghan, M.B.B.S., Ph.D.,
M. E. Bowers, B. S. , N. Trinh, M. S. , G. A. Tung, M. D. , F. A. C. R
M. Doherty, P. Dieppe  Osteoarthritis and Cartilage 
Abnormalities identified in the knees of asymptomatic volunteers using peripheral magnetic resonance imaging  K.A. Beattie, B.Sc., P. Boulos, M.D., F.R.C.P.
Fully automated segmentation of cartilage from magnetic resonance images using improved 3D shape context and active shape model  T. Ye, X. Cui, H. Kim 
General Information Osteoarthritis and Cartilage
Presentation transcript:

Accuracy and test–retest precision of quantitative cartilage morphology on a 1.0T peripheral magnetic resonance imaging system  D. Inglis, Ph.D., M. Pui, M.D., G. Ioannidis, M.Sc., K. Beattie, Ph.D., P. Boulos, M.D., M.Sc., J.D. Adachi, M.D., C.E. Webber, Ph.D., F. Eckstein, M.D.  Osteoarthritis and Cartilage  Volume 15, Issue 1, Pages 110-115 (January 2007) DOI: 10.1016/j.joca.2006.08.006 Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 ONI Medical Systems, Inc., OrthOne 1.0T peripheral MRI scanner. Osteoarthritis and Cartilage 2007 15, 110-115DOI: (10.1016/j.joca.2006.08.006) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 1.0T graphical scan planning: (a) FSE coronal scout, (b) FSE sagittal scout, (c) FSE axial scout, (d) final coronal 3DGRE fat-sat. Axial reference lines (red) and final coronal slice reference (yellow). Osteoarthritis and Cartilage 2007 15, 110-115DOI: (10.1016/j.joca.2006.08.006) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Example of image segmentation for a K–L grade 2 subject. First slice included in condylar ROI: (a) 1.0T, (b) 1.5T. Last slice included: (c) 1.0T, (d) 1.5T. Segmentation boundaries (green, magenta) shown. Osteoarthritis and Cartilage 2007 15, 110-115DOI: (10.1016/j.joca.2006.08.006) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions