Volume 15, Issue 2, Pages (February 2012)

Slides:



Advertisements
Similar presentations
Sophie Croizier, Vincent Prevot, Sebastien G. Bouret  Cell Reports 
Advertisements

Volume 10, Issue 4, Pages (October 2009)
AgRP and POMC Neurons Are Hypophysiotropic and Coordinately Regulate Multiple Endocrine Axes in a Larval Teleost  Chao Zhang, Paul M. Forlano, Roger D.
Input organization and plasticity of hypocretin neurons
More Than Satiety: Central Serotonin Signaling and Glucose Homeostasis
Volume 15, Issue 4, Pages (April 2012)
Volume 23, Issue 1, Pages (January 2016)
Volume 52, Issue 2, Pages (October 2006)
Volume 6, Issue 6, Pages (December 2007)
Volume 7, Issue 4, Pages (April 2008)
Volume 74, Issue 6, Pages (June 2012)
Parabrachial CGRP Neurons Control Meal Termination
Volume 4, Issue 2, Pages (August 2006)
Ling Yang, Ping Li, Suneng Fu, Ediz S. Calay, Gökhan S. Hotamisligil 
Irs1 Serine 307 Promotes Insulin Sensitivity in Mice
Volume 11, Issue 4, Pages (April 2010)
RIPping off GABA Release in Hypothalamic Circuits Causes Obesity
Volume 23, Issue 5, Pages (May 2016)
Volume 12, Issue 5, Pages (November 2010)
Volume 71, Issue 1, Pages (July 2011)
Volume 14, Issue 2, Pages (August 2011)
SIRT1 Deacetylase in SF1 Neurons Protects against Metabolic Imbalance
Volume 18, Issue 6, Pages (December 2013)
Volume 71, Issue 3, Pages (August 2011)
Volume 18, Issue 7, Pages (February 2017)
Volume 10, Issue 5, Pages (November 2009)
SIRT1 Deacetylase in SF1 Neurons Protects against Metabolic Imbalance
Volume 19, Issue 2, Pages (February 2014)
Volume 156, Issue 3, Pages (January 2014)
Volume 13, Issue 4, Pages (April 2011)
Critical Role for Hypothalamic mTOR Activity in Energy Balance
Volume 13, Issue 2, Pages (February 2011)
Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity  Marcelo O. Dietrich, Zhong-Wu Liu, Tamas L.
Volume 8, Issue 4, Pages (October 2008)
Mitochondria Restrict Growth of the Intracellular Parasite Toxoplasma gondii by Limiting Its Uptake of Fatty Acids  Lena Pernas, Camilla Bean, John C.
Volume 9, Issue 1, Pages (January 2009)
Volume 1, Issue 4, Pages (April 2005)
Volume 7, Issue 1, Pages (January 2008)
Volume 15, Issue 5, Pages (May 2012)
Volume 49, Issue 2, Pages (January 2006)
Juan Ji An, Guey-Ying Liao, Clint E. Kinney, Niaz Sahibzada, Baoji Xu 
Rapid versus Delayed Stimulation of Feeding by the Endogenously Released AgRP Neuron Mediators GABA, NPY, and AgRP  Michael J. Krashes, Bhavik P. Shah,
Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity  Marcelo O. Dietrich, Zhong-Wu Liu, Tamas L.
Volume 69, Issue 3, Pages (February 2011)
Gloria Slattum, Yapeng Gu, Roger Sabbadini, Jody Rosenblatt 
Identification of White Adipocyte Progenitor Cells In Vivo
Volume 23, Issue 6, Pages (June 2016)
Volume 9, Issue 6, Pages (June 2009)
The Hormonal Control of Food Intake
Volume 5, Issue 1, Pages (January 2007)
Induction of Leptin Resistance by Activation of cAMP-Epac Signaling
Volume 159, Issue 2, Pages (October 2014)
Volume 17, Issue 2, Pages (February 2013)
Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice  Decheng Ren, Minghua Li, Chaojun Duan, Liangyou.
Treating obesity: Does antagonism of NPY fit the bill?
Volume 5, Issue 6, Pages (June 2007)
Volume 23, Issue 6, Pages (June 2016)
Volume 22, Issue 6, Pages (December 2015)
Volume 13, Issue 6, Pages (June 2011)
Volume 9, Issue 6, Pages (June 2009)
Volume 7, Issue 2, Pages (February 2008)
Volume 6, Issue 4, Pages (October 2007)
Volume 37, Issue 4, Pages (February 2003)
Volume 1, Issue 6, Pages (June 2005)
Volume 71, Issue 3, Pages (August 2011)
Volume 5, Issue 1, Pages (January 2007)
Volume 26, Issue 2, Pages e3 (January 2019)
Volume 12, Issue 1, Pages (July 2010)
Volume 20, Issue 4, Pages (October 2014)
Autophagy Is Required to Maintain Muscle Mass
Presentation transcript:

Volume 15, Issue 2, Pages 247-255 (February 2012) Loss of Autophagy in Pro-opiomelanocortin Neurons Perturbs Axon Growth and Causes Metabolic Dysregulation  Bérengère Coupé, Yuko Ishii, Marcelo O. Dietrich, Masaaki Komatsu, Tamas L. Horvath, Sebastien G. Bouret  Cell Metabolism  Volume 15, Issue 2, Pages 247-255 (February 2012) DOI: 10.1016/j.cmet.2011.12.016 Copyright © 2012 Elsevier Inc. Terms and Conditions

Cell Metabolism 2012 15, 247-255DOI: (10.1016/j.cmet.2011.12.016) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 1 Identification of Autophagy in Hypothalamic POMC Processes (A) Representative images and quantification of LC3-GFP puncta in the arcuate nucleus (ARH) and the hypothalamic periventricular zone (PeV) of P10, P14, P21, and adult (8- to 9-week-old) mice (n = 4–5 per group). Dashed boxes in the schematics represent the approximate borders of the areas used for quantification. (B) Immunoblot analysis of LC3 (LC3-I, 18 kDa; LC3-II, 16 kDa) and b-actin (as a loading control) from hypothalami derived from adult mice. (C) Representative electron micrographs showing autophagosomes (arrows) in POMC-immunolabeled perikarya and processes of P24 wild-type mice. D, dendrites, V3, third ventricle. Values are shown as mean ± SEM. Scale bar, 15 μm (A) and 1 μm (C). Cell Metabolism 2012 15, 247-255DOI: (10.1016/j.cmet.2011.12.016) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 2 Altered Metabolism in Mice Lacking Autophagy in POMC Neurons (A and B) Pre- (A) and postweaning (B) growth curves of Atg7loxP/loxP (n ≥ 9) and Pomc-Cre; Atg7loxP/loxP (n = 15) male mice. (C) Leptin sensitivity of 10-week-old Atg7loxP/loxP (n = 6) and Pomc-Cre; Atg7loxP/loxP (n = 8) male mice. (D and E) Mass of retroperitoneal (D) and epididymal (E) fat of 7- and 15- to 17-week-old Atg7loxP/loxP (n = 4–5) and Pomc-Cre; Atg7loxP/loxP (n = 5–11) male mice. (F) Serum leptin and (I) insulin levels in Atg7loxP/loxP (n = 8) and Pomc-Cre; Atg7loxP/loxP (n = 6) male mice from 7 and 15 to 17 weeks of age. (G and H) Glucose tolerance test (GTT) (G) and area under the GTT curve (H) of 8- to 9-week-old Atg7loxP/loxP (n = 7) and Pomc-Cre; Atg7loxP/loxP (n = 12) male mice. Values are shown as mean ± SEM. ∗p < 0.05 versus Atg7loxP/loxP. Cell Metabolism 2012 15, 247-255DOI: (10.1016/j.cmet.2011.12.016) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 3 Lack of Autophagy in POMC Neurons Leads to the Gradual Accumulation of Ubiquitin Aggregates in the Arcuate Nucleus (A and B) Quantification of ubiquitin- (A) and p62-immunoreactivity (B) in the arcuate nucleus (ARH) of P14, P22, and adult (15- to 17-week-old) Atg7loxP/loxP (n = 4) and Pomc-Cre; Atg7loxP/loxP (n = 4) male mice. Confocal images illustrating ubiquitin- (A) and p62-immunoreactivity (B) in the ARH of adult Atg7loxP/loxP and Pomc-Cre; Atg7loxP/loxP mice. (C) Confocal images showing the presence of ubiquitin-immunoreactivity (green fluorescence) in αMSH-positive cells (red fluorescence) of an adult Pomc-Cre; Atg7loxP/loxP mouse. The arrow points to a double labeled cell. V3, third ventricle. Values are shown as mean ± SEM. ∗p < 0.05 versus P14; #p < 0.05 versus P22. Scale bars, 50 μm. Cell Metabolism 2012 15, 247-255DOI: (10.1016/j.cmet.2011.12.016) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 4 Disruption of POMC Projections in Mice Lacking Autophagy in POMC Neurons Confocal images and quantification of αMSH-IR fibers in the PVH of P14 (A), P22 (B), and adult (15- to 17-week-old) (C) Atg7loxP/loxP (n = 4) and Pomc-Cre; Atg7loxP/loxP (n = 4) male mice. (D) Images and quantification of b-endorphin (a POMC-derived peptide)-immunopositive fibers derived from isolated organotypic cultures of the ARH from P4 Atg7loxP/loxP and Pomc-Cre; Atg7loxP/loxP mice. ARH, arcuate nucleus of the hypothalamus; PVH, paraventricular nucleus of the hypothalamus; V3, third ventricle. Values are shown as mean ± SEM. ∗p < 0.05 versus Atg7loxP/loxP. Scale bars, 50 μm. Cell Metabolism 2012 15, 247-255DOI: (10.1016/j.cmet.2011.12.016) Copyright © 2012 Elsevier Inc. Terms and Conditions