2017 Annual Summary Zong-Kuan Guo 2017.12.22
Publication List Gravitational Waves from Oscillons with Cuspy Potentials J. Liu, Z.K. Guo, R.G. Cai, G. Shiu Accepted for publication in PRL The Gravitational-Wave Physics R.G. Cai, Z. Cao, Z.K. Guo, S.J. Wang, T. Yang National Science Review 4 (2017) 687-706 Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background W.M. Dai, Z.K. Guo, R.G. Cai, Y.Z. Zhang Eur. Phys. J. C 77 (2017) 386
Science funds
Awards 2016 Most Cited Chinese Researchers (Elsevier) http://china.elsevier.com/elsevierdnn/ch/电子产品信息/Scopus/2016年中国高被引学者榜单发布/tabid/3053/Default.aspx
Students Wei-Ming Dai got a PhD.
Teaching Graduate course: Modern Cosmology at the Yanqi Lake Campus of UCAS
Popular Article 参与了《中国大百科全书》引力理论部分
Academic Activities Spring School on Numerical Relativity and Gravitational Wave Physics 太极计划数据分析系列报告之一:极端质量比自旋双星动力学和引力波计算 太极计划数据分析系列报告之二:Theoretical issues related to data analysis of space-based gravitational wave detector 太极计划数据分析系列报告之三:Gravitational wave radiation of the Galactic double white dwarfs 太极计划数据分析系列报告之四:LIGO引力波数据分析 太极计划数据分析系列报告之五:高频引力波数据处理 空间引力波数据分析冬季学校:Winter School on Gravitational-wave Data Analysis 无知者无畏 巨大挑战 码农
Spring School on Numerical Relativity and Gravitational Wave Physics Winter School on Gravitational-wave Data Analysis
Highlight: GWs from Oscillons cosmic probe GWs Evolution of the Universe sources, background
Ron Drever, died 2017.3.7 Barry C. Barish Rainer Weiss Kip S. Thorne GW150914 Phys. Rev. Lett. 116 (2016) 061102 GW151226 Phys. Rev. Lett. 116 (2016) 241103 GW170104 Phys. Rev. Lett. 118 (2017) 221101 GW170814 Phys. Rev. Lett. 119 (2017) 141101 GW170817 Phys. Rev. Lett. 119 (2017) 161101 2016 Breakthrough Prize in Fundamental Physics 2016 Gruber Foundation Cosmology Prize 2016 Shaw Prize 2016 Kavli Prize in Astrophysics 2016 Harvey Prize 2017 Nobel Prize in physics 2017 Fudan-Zhongzhi Science Award
GWs from IMR binaries GWs from inflation stochastic long time low frequency < 10 −15 Hz B-mode, PTA, laser probe early-Universe physics GWs from IMR binaries a direction short time High frequency > 10 −9 Hz Laser, PTA probe later-Universe physics Log(f) 16 14 12 10 8 6 4 2 2 Planck 2009
~7𝜎 GWs produced during inflaiton GWs produced during reheating/preheating
2002 Dirac Prize (Guth, Linde, Steinhardt) Alan H. Guth Andrei D. Linde Alexei A. Starobinsky Spectrum Of Relict Gravitational Radiation And The Early State Of The Universe, Alexei A. Starobinsky, JETPL 30 (1979) 682. Inflationary universe: A possible solution to the horizon and flatness problems, Alan H. Guth, Phys. Rev. D 23 (1981) 347. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy, and Primordial Monopole Problems, Andrei D. Linde, Phys. Lett. B 108 (1982) 389. 2002 Dirac Prize (Guth, Linde, Steinhardt) 2004 Gruber Prize in Cosmology (Guth, Linde) 2012 Fundamental Physics Prize (Guth, Linde) 2013 Gruber Prize in Cosmology (Starobinsky, Mukhanov) 2014 Kavli Prize in Astrophysics (Guth, Linde, Starobinsky) 20xx Nobel Prize in physics?
Constraints on inflationary models from CMB data Credit: Planck Collaboration, arXiv:1502.02114
Probe of inflation cosmology GWs produced during inflation to distinguish inflationary models to determine the energy scale of inflation GWs produced during reheating/preheating to constrain inflationary models to determine the reheating temperature Reheating Constraints to Inflationary Models, L. Dai, M. Kamionkowski, and J. Wang, Phys. Rev. Lett. 113 (2014) 041302. Reheating Phase Diagram for Higgs Inflation, R.G. Cai, Z.K. Guo, S.J. Wang, Phys. Rev. D 92 (2015) 063506.
Right: 𝑣= 10 −2 𝑀 pl , 𝑔 2 ~0.05 Left: 𝑣= 10 −5 𝑀 pl , 𝑔 2 ~ 10 −14 J. Garcia-Bellido, D.G. Figueroa, Phys. Rev. Lett. 98 (2007) 061302
𝑉 𝜙,𝜒 = 1 2 𝜇 2 𝜙 2 + 1 2 𝑔 2 𝜙 2 𝜒 2 𝑞≡ 𝑔 2 𝑀 pl 2 𝜇 2 =2× 10 6 Right: 𝜇= 10 −6 𝑀 pl Left: 𝜇= 10 −18 𝑀 pl R. Easther, J.T. Giblin Jr, E.A. Lim, Phys. Rev. Lett. 99 (2007) 221301
Gravitational Waves from Oscillons with Cuspy Potentials 𝑉 𝜙 =𝜆 𝑀 pl 4−𝑝 𝜙 𝑝 , 𝑝=1,2/3, 2/5 J. Liu, Z.K. Guo, R.G. Cai, G. Shiu, PRL, arXiv:1707.09841
Silverstein et al, arXiv:0803.3085, arXiv:0808.0706 Planck Collaboration, arXiv:1502.02114 Brandenberger et al, arXiv:1502.06135 𝛿 𝜙 𝑘 +3𝐻𝛿 𝜙 𝑘 + 𝑘 2 𝑎 2 + 𝑉 " (𝜙) 𝛿 𝜙 𝑘 =0
Lattice simulation 𝑡 0 𝑡 1 𝑡 𝑒 𝜙 𝑛 𝑥 ,𝑡 ,ℎ 𝑥 ,𝑡 ,𝑎(𝑡) 𝑁 3 =256×256×256 𝐿 𝐿 𝐿 Staggered leapfrog algorithm 𝑡 0 𝑡 1 𝑡 𝑒 𝜙 𝑛 𝑥 ,𝑡 ,ℎ 𝑥 ,𝑡 ,𝑎(𝑡) 𝑁 3 =256×256×256 𝐿= 𝐻 −1
Research Plan gravitational-wave data analysis (Taiji) primordial black holes
Thanks!