2017 Annual Summary Zong-Kuan Guo 2017.12.22.

Slides:



Advertisements
Similar presentations
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Advertisements

Cosmology and extragalactic astronomy Mat Page Mullard Space Science Lab, UCL 10. Inflation.
Cosmological Structure Formation A Short Course
1 What can gravitational waves do to probe early cosmology? Barry C. Barish Caltech “Kavli-CERCA Conference on the Future of Cosmology” Case Western Reserve.
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
1 On the road to discovery of relic gravitational waves: From cosmic microwave background radiation Wen Zhao Department of Astronomy University of Science.
The Big Bang: Fact or Fiction? The Big Bang Fact or fiction? Dr Cormac O’Raifeartaigh.
Inflation: why and how? Gert Jan Hoeve, December 2012.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
Cosmic Inflation Tomislav Prokopec (ITP, UU) Utrecht Summer School, 28 Aug 2009 ˚ 1˚ WMAP 3y 2006.
Black hole production in preheating Teruaki Suyama (Kyoto University) Takahiro Tanaka (Kyoto University) Bruce Bassett (ICG, University of Portsmouth)
Why there are many alternatives to inflation ? Why there are many alternatives to inflation ? 朴云松 朴云松 Graduated University of CAS Graduated University.
Quintom Bounce with a Galileon Model Chung-Yuan Christian University, Taiwan & Institute of High Energy Physics, Beijing Based on Collaborated.
Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,
Wei-Tou Ni Department of Physics National Tsing Hua University [1] W.-T. Ni, (MPLA 25 [2010]
Constraining the Inflationary Gravitational Wave Background: CMB and Direct Detection Nathan Miller Keating Cosmology Lab CASS Journal Club 3/13/07.
1. Cosmic string scenario was the first mechanism to provide the origin of density fluctuations that seeded cosmic large-scale structures from fundamental.
1 Observable (?) cosmological signatures of superstrings in pre-big bang models of inflation Università degli Studi di Bari Facoltà di Scienze Matematiche,
Edmund Bertschinger MIT Department of Physics and Kavli Institute for Astrophysics and Space Research The Cosmic Menu of Dark Matter and Dark Energy.
Exotic Physics in the Dark Ages Katie Mack Institute of Astronomy / Kavli Institute for Cosmology, University of Cambridge.
Probing inflation with CMB anisotropies Zong-Kuan Guo (ITP, CAS) ICFPC 2012 (Weihai) August 12, 2012.
PHY th century cosmology 1920s – 1990s (from Friedmann to Freedman)  theoretical technology available, but no data  20 th century: birth of observational.
Recent Progress on Dark Energy Study Xinmin Zhang IHEP
Testing the slow roll inflation paradigm with the Big Bang Observer
Review of stochastic sources of gravitational radiation Carlo Ungarelli Physics Department University of Pisa GWADW06.
Observational constraints on inflationary models Zong-Kuan Guo (ITP, CAS) CosPA2011 (Peking Uni) October 31, 2011.
A Galileon Bounce Model Based on JCAP 1110:036,2011 (arXiv: ) Collaborated with J. Evslin, Y. F. Cai, M. Z. Li, X. M. Zhang See also D. Easson.
The Cosmic Microwave Background
CMB, lensing, and non-Gaussianities
Gravitational Waves from primordial density perturbations Kishore N. Ananda University of Cape Town In collaboration with Chris Clarkson and David Wands.
The Big Bang Model is a broadly accepted theory for the origin and evolution of our universe.
Mike Cruise University of Birmingham Searches for very high frequency gravitational waves.
LISA Laser Interferometer Space Antenna: The Mission Mike Cruise For the LISA Team.
Lecture 17: Force Unification Lecture 18: The Inflationary Universe Astronomy 5: The Formation and Evolution of the Universe Sandra M. Faber Spring Quarter.
CMB physics Zong-Kuan Guo 《现代宇宙学》
The Quest for Gravitational Waves: a global strategy
Collapse of Small Scales Density Perturbations
Theoretical Particle Physics Group (TPP)
ICGAC13, Seoul,July 6, 2017 Standard Sirens and Dark Sector with Gaussian Process Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sceinces.
Current and future ground-based gravitational-wave detectors
Gravitational Waves: On the Brink of a New Astronomy
The first detection of gravitational waves with LIGO
Cosmological Sources of Stochastic Gravitational-Wave Background
Detection of gravitational waves from binary black hole mergers
Lecture 22: The Planck Time---The Present Limit to All Knowledge
The 2017 Nobel Prize in Physics "for decisive contributions to the LIGO detector and the observation of gravitational waves" Peter Berg Department of Science.
Recent status of dark energy and beyond
Stochastic Background
The Cosmic Microwave Background and the WMAP satellite results
Second BRICS-AGAC Symposium
Inflation with a Gauss-Bonnet coupling
Physics Seminar Measurement of the Cosmic Microwave Background anisotropies and polarization with Planck Assoc. Prof. Guillaume Patanchon Astroparticle.
暗能量、残余引力波、CMB极化 Dark energy, relic GW and CMB polarization 张杨 (Yang Zhang) 中国科学技术大学 (USTC) 天体物理中心(CFA) 2018/12/3.
Stochastic gravitational wave and its spectral property
Notes on non-minimally derivative coupling
Why there are many alternatives to inflation ?
引力波 — 早期宇宙的探针 郭宗宽 第二届引力波天体物理学术研讨会
Quantum Spacetime and Cosmic Inflation
Cosmic Microwave Background
GWs from the early Universe
General, single field Inflation
Spontaneous creation of the universe from nothing
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
On the origin of primordial black holes
The origin of primordial black holes — a double inflection point inflationary model Zong-Kuan Guo 第二届新疆理论物理前沿学术研讨会
Messages from the Big Bang George Chapline and Jim Barbieri
The origin of primordial black holes
Cosmological Scaling Solutions
“B-mode from space” workshop,
Collaborator: Taifan Zheng Supervisor: Edna Cheung
Presentation transcript:

2017 Annual Summary Zong-Kuan Guo 2017.12.22

Publication List Gravitational Waves from Oscillons with Cuspy Potentials J. Liu, Z.K. Guo, R.G. Cai, G. Shiu Accepted for publication in PRL The Gravitational-Wave Physics R.G. Cai, Z. Cao, Z.K. Guo, S.J. Wang, T. Yang National Science Review 4 (2017) 687-706 Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background W.M. Dai, Z.K. Guo, R.G. Cai, Y.Z. Zhang Eur. Phys. J. C 77 (2017) 386

Science funds

Awards 2016 Most Cited Chinese Researchers (Elsevier) http://china.elsevier.com/elsevierdnn/ch/电子产品信息/Scopus/2016年中国高被引学者榜单发布/tabid/3053/Default.aspx

Students Wei-Ming Dai got a PhD.

Teaching Graduate course: Modern Cosmology at the Yanqi Lake Campus of UCAS

Popular Article  参与了《中国大百科全书》引力理论部分

Academic Activities Spring School on Numerical Relativity and Gravitational Wave Physics 太极计划数据分析系列报告之一:极端质量比自旋双星动力学和引力波计算 太极计划数据分析系列报告之二:Theoretical issues related to data analysis of space-based gravitational wave detector 太极计划数据分析系列报告之三:Gravitational wave radiation of the Galactic double white dwarfs 太极计划数据分析系列报告之四:LIGO引力波数据分析 太极计划数据分析系列报告之五:高频引力波数据处理 空间引力波数据分析冬季学校:Winter School on Gravitational-wave Data Analysis 无知者无畏  巨大挑战  码农

Spring School on Numerical Relativity and Gravitational Wave Physics Winter School on Gravitational-wave Data Analysis

Highlight: GWs from Oscillons cosmic probe GWs Evolution of the Universe sources, background

Ron Drever, died 2017.3.7 Barry C. Barish Rainer Weiss Kip S. Thorne GW150914 Phys. Rev. Lett. 116 (2016) 061102 GW151226 Phys. Rev. Lett. 116 (2016) 241103 GW170104 Phys. Rev. Lett. 118 (2017) 221101 GW170814 Phys. Rev. Lett. 119 (2017) 141101 GW170817 Phys. Rev. Lett. 119 (2017) 161101 2016 Breakthrough Prize in Fundamental Physics 2016 Gruber Foundation Cosmology Prize 2016 Shaw Prize 2016 Kavli Prize in Astrophysics 2016 Harvey Prize 2017 Nobel Prize in physics 2017 Fudan-Zhongzhi Science Award

GWs from IMR binaries GWs from inflation stochastic long time low frequency < 10 −15 Hz B-mode, PTA, laser probe early-Universe physics GWs from IMR binaries a direction short time High frequency > 10 −9 Hz Laser, PTA probe later-Universe physics Log(f) 16 14 12 10 8 6 4 2 2 Planck 2009

~7𝜎 GWs produced during inflaiton GWs produced during reheating/preheating

2002 Dirac Prize (Guth, Linde, Steinhardt) Alan H. Guth Andrei D. Linde Alexei A. Starobinsky Spectrum Of Relict Gravitational Radiation And The Early State Of The Universe, Alexei A. Starobinsky, JETPL 30 (1979) 682. Inflationary universe: A possible solution to the horizon and flatness problems, Alan H. Guth, Phys. Rev. D 23 (1981) 347. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy, and Primordial Monopole Problems, Andrei D. Linde, Phys. Lett. B 108 (1982) 389. 2002 Dirac Prize (Guth, Linde, Steinhardt) 2004 Gruber Prize in Cosmology (Guth, Linde) 2012 Fundamental Physics Prize (Guth, Linde) 2013 Gruber Prize in Cosmology (Starobinsky, Mukhanov) 2014 Kavli Prize in Astrophysics (Guth, Linde, Starobinsky) 20xx Nobel Prize in physics?

Constraints on inflationary models from CMB data Credit: Planck Collaboration, arXiv:1502.02114

Probe of inflation cosmology GWs produced during inflation to distinguish inflationary models to determine the energy scale of inflation GWs produced during reheating/preheating to constrain inflationary models to determine the reheating temperature Reheating Constraints to Inflationary Models, L. Dai, M. Kamionkowski, and J. Wang, Phys. Rev. Lett. 113 (2014) 041302. Reheating Phase Diagram for Higgs Inflation, R.G. Cai, Z.K. Guo, S.J. Wang, Phys. Rev. D 92 (2015) 063506.

Right: 𝑣= 10 −2 𝑀 pl , 𝑔 2 ~0.05 Left: 𝑣= 10 −5 𝑀 pl , 𝑔 2 ~ 10 −14 J. Garcia-Bellido, D.G. Figueroa, Phys. Rev. Lett. 98 (2007) 061302

𝑉 𝜙,𝜒 = 1 2 𝜇 2 𝜙 2 + 1 2 𝑔 2 𝜙 2 𝜒 2 𝑞≡ 𝑔 2 𝑀 pl 2 𝜇 2 =2× 10 6 Right: 𝜇= 10 −6 𝑀 pl Left: 𝜇= 10 −18 𝑀 pl R. Easther, J.T. Giblin Jr, E.A. Lim, Phys. Rev. Lett. 99 (2007) 221301

Gravitational Waves from Oscillons with Cuspy Potentials 𝑉 𝜙 =𝜆 𝑀 pl 4−𝑝 𝜙 𝑝 , 𝑝=1,2/3, 2/5 J. Liu, Z.K. Guo, R.G. Cai, G. Shiu, PRL, arXiv:1707.09841

Silverstein et al, arXiv:0803.3085, arXiv:0808.0706 Planck Collaboration, arXiv:1502.02114 Brandenberger et al, arXiv:1502.06135 𝛿 𝜙 𝑘 +3𝐻𝛿 𝜙 𝑘 + 𝑘 2 𝑎 2 + 𝑉 " (𝜙) 𝛿 𝜙 𝑘 =0

Lattice simulation 𝑡 0 𝑡 1 𝑡 𝑒 𝜙 𝑛 𝑥 ,𝑡 ,ℎ 𝑥 ,𝑡 ,𝑎(𝑡) 𝑁 3 =256×256×256 𝐿 𝐿 𝐿 Staggered leapfrog algorithm 𝑡 0 𝑡 1 𝑡 𝑒 𝜙 𝑛 𝑥 ,𝑡 ,ℎ 𝑥 ,𝑡 ,𝑎(𝑡) 𝑁 3 =256×256×256 𝐿= 𝐻 −1

Research Plan gravitational-wave data analysis (Taiji) primordial black holes

Thanks!