Von Economo Neurons in the Anterior Insula of the Macaque Monkey

Slides:



Advertisements
Similar presentations
Building Better Models of Visual Cortical Receptive Fields
Advertisements

Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
A Motion Direction Map in Macaque V2
Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey  Farran Briggs, Caitlin W.
Volume 92, Issue 1, Pages (October 2016)
Volume 49, Issue 6, Pages (March 2006)
Volume 71, Issue 5, Pages (September 2011)
Volume 87, Issue 5, Pages (September 2015)
Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts  Bin Lin, Steven W Wang, Richard H Masland 
Volume 72, Issue 5, Pages (December 2011)
Coding of the Reach Vector in Parietal Area 5d
Synapses with Inhibitory Neurons Differentiate Anterior Cingulate from Dorsolateral Prefrontal Pathways Associated with Cognitive Control  Maria Medalla,
Volume 48, Issue 5, Pages (December 2005)
Spinal Cord Atrophy and Reorganization of Motoneuron Connections Following Long- Standing Limb Loss in Primates  Carolyn W.-H. Wu, Jon H. Kaas  Neuron 
Electron Microscopy at Scale
Masayuki Haruta, Yoshio Hata  Current Biology 
Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex
Cognitive Modulation of Olfactory Processing
Olfactory neurons are interdependent in maintaining axonal projections
Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons  Kassandra M. Ori-McKenney, Lily Yeh.
Volume 73, Issue 1, Pages 1-3 (January 2012)
Volume 78, Issue 6, Pages (June 2013)
Dante S. Bortone, Shawn R. Olsen, Massimo Scanziani  Neuron 
Volume 80, Issue 3, Pages (October 2013)
Stefan Schmidt, Barbara E. Ehrlich  Neuron 
Volume 57, Issue 2, Pages (January 2008)
Tommy L. Lewis, Franck Polleux  Neuron 
Spontaneous Activity Drives Local Synaptic Plasticity In Vivo
Aligning a Synapse Neuron
Volume 90, Issue 3, Pages (May 2016)
Volume 89, Issue 5, Pages (March 2016)
Bruce S. McEwen, John H. Morrison  Neuron 
Hyoung F. Kim, Hidetoshi Amita, Okihide Hikosaka  Neuron 
James G. Heys, Krsna V. Rangarajan, Daniel A. Dombeck  Neuron 
Retinal Input Instructs Alignment of Visual Topographic Maps
Jonathan J. Nassi, David C. Lyon, Edward M. Callaway  Neuron 
Transient and Persistent Dendritic Spines in the Neocortex In Vivo
Volume 54, Issue 2, Pages (April 2007)
Volume 50, Issue 3, Pages (May 2006)
A General Principle of Neural Arbor Branch Density
Yi Zuo, Aerie Lin, Paul Chang, Wen-Biao Gan  Neuron 
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 74, Issue 2, Pages (April 2012)
Parallel Mechanisms Encode Direction in the Retina
Volume 57, Issue 4, Pages (February 2008)
Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey  Farran Briggs, Caitlin W.
Christine Grienberger, Xiaowei Chen, Arthur Konnerth  Neuron 
Dendritic Spines and Distributed Circuits
Stephan Lammel, Daniela I. Ion, Jochen Roeper, Robert C. Malenka 
David C. Lyon, Jonathan J. Nassi, Edward M. Callaway  Neuron 
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 20, Issue 5, Pages (May 1998)
Han Xu, Hyo-Young Jeong, Robin Tremblay, Bernardo Rudy  Neuron 
Gilad Silberberg, Henry Markram  Neuron 
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Masayuki Matsumoto, Masahiko Takada  Neuron 
Molecular Neuroscience in the 21st Century: A Personal Perspective
Cortical Microcircuits
Bálint Lasztóczi, Thomas Klausberger  Neuron 
Volume 57, Issue 2, Pages (January 2008)
Volume 78, Issue 6, Pages (June 2013)
Cross-species comparisons.
Kristy A. Sundberg, Jude F. Mitchell, John H. Reynolds  Neuron 
Serkan Oray, Ania Majewska, Mriganka Sur  Neuron 
Spatial Representation along the Proximodistal Axis of CA1
Volume 74, Issue 5, Pages (June 2012)
Volume 72, Issue 5, Pages (December 2011)
Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts  Bin Lin, Steven W Wang, Richard H Masland 
Volume 54, Issue 1, Pages (April 2007)
Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
Presentation transcript:

Von Economo Neurons in the Anterior Insula of the Macaque Monkey Henry C. Evrard, Thomas Forro, Nikos K. Logothetis  Neuron  Volume 74, Issue 3, Pages 482-489 (May 2012) DOI: 10.1016/j.neuron.2012.03.003 Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 1 The Von Economo Neuron Is Present in Layer 5b in a Restricted Portion of the Agranular Anterior Insula in the Macaque Monkey (A) High-magnification photomicrographs demonstrating the identical morphology of the macaque and human VENs. Scale bar represents 25 μm. (B) Histogram demonstrating the larger volume of the macaque and human VENs compared to their respective pyramidal and fusiform neurons (p < 0.01). Volumes were measured in three rhesus, three cynomolgus, and four human hemispheres. Ten VENs, 20 local pyramidal, and 10 layer 6 fusiform neurons were measured in each hemisphere. (C) Low-magnification photomicrographs showing the similar location of the macaque and human VENs (red asterisks) and fork cells (green asterisks) in layer 5b in coronal sections though the agranular insula. Scale bar represents 250 μm. (D) Intermediate magnification photomicrograph showing the exact location of VENs (red arrowheads) and fork cells (green arrowheads) in layer 5 in the M. mulatta section illustrated in (C). The framed field corresponds to the framed field in (C). High-magnification photomicrographs of each numbered cell are shown in Figure S1A. Scale bar represents 100 μm. (E) Photomicrographs of typical fork cells in the agranular insula in macaques and human. (The photomicrograph from M. fascicularis also shows a VEN in the top left corner.) Scale bar represents 25 μm. (F) Plots of VENs (red) and fork cells (green) in one individual section per species illustrating the similar distribution of the macaque and human VENs in a restricted portion of the agranular insula, anterior to the limen (data not shown) and medial to the superior limiting sulcus (slsi). (See also Figures S1B and S1C for plots and photomicrographs of VENs and fork cells in the anterior cingulate cortex.) (G) Table comparing the average number (±SD) of VENs and local pyramidal neurons in layer 5b. (H) Bivariate scattergram showing individual counts of VENs in the left and right side of the agranular anterior insula in three cynomolgus (open circles) and three rhesus (closed circles) monkeys. Neuron 2012 74, 482-489DOI: (10.1016/j.neuron.2012.03.003) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 2 The Macaque VEN Shares Numerous Characteristics with the Human VEN (A) A rapid Golgi stain reveals that the macaque VEN possesses all morphological characteristics of typical pyramidal projection neurons and of the human VEN (Watson et al., 2006). S, soma; b, dendritic branching; a, axon. Arrowheads point to the distal extension of the apical dendrite. The insert shows the distal arborization of the apical dendrite into spiny branches. Scale bar represents 25 μm. (B and B′) Macaque VENs are distinctively immunopositive for SMI-32 in layer 5b, whereas pyramidal neurons are immunopositive predominantly in layer 5a. Scale bar represents 100 μm. (C and C′) Macaque VENs are distinctively immunopositive for DISC-1 in layer 5b. Scale bar represents 100 μm. (D–F) Macaque VENs are immunopositive for the KGA isoform of PAG (D), the serotonin receptor 2a (E), and the dopamine receptor D3 (F). Scale bar represents 15 μm in (D)–(F). (G) Macaque VEN retrogradely labeled in AAI with an injection of Alexa 594 dextran in contralateral AAI. (See Figures S1D–S1F for an illustration of the injection site and for more examples in two other cases.) Scale bar represents 25 μm in the main panel. The insert shows retrograde labeling of dendritic spines. Neuron 2012 74, 482-489DOI: (10.1016/j.neuron.2012.03.003) Copyright © 2012 Elsevier Inc. Terms and Conditions