Doppler Shifts of Interstellar NaD lines

Slides:



Advertisements
Similar presentations
Spectra of meteors and meteor trains Jiří Borovička Department of Interplanetary Matter.
Advertisements

The Amazing Spectral Line Begin. Table of Contents A light review Introduction to spectral lines What spectral lines can tell us.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Raman Spectroscopy A) Introduction IR Raman
Chapter 19: Between the Stars: Gas and Dust in Space.
The K Stars: Orange Giants & Brighter Dwarfs Presentation by Paramita Barai Astr 8600, Stellar Spectroscopy.
Flame Test and the EMS. Absorption and Emission of Light in a Flame When a substance is heated in a flame, the substances electrons absorb energy from.
Electromagnetic Radiation Electromagnetic Spectrum Radiation Laws Atmospheric Absorption Radiation Terminology.
Spectrophotometry Chapter 17, Harris
The flames of Romance The flames of Romance Candlelight and Chemistry Molecular spectroscopy and reaction dynamics Arnar Hafliðason April 10 th 2015.
Chemical Ideas 6.7 Where does colour come from?. 25 questions to see what you’ve remembered.
Stellar Spectra Physical Astronomy Professor Lee Carkner Lecture 7.
LECTURE 6, SEPTEMBER 9, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
Light Emission. Today’s Topics Excitation Emission Spectra Incandescence –Absorption Spectra.
The Interstellar Medium Chapter 14. Is There Anything Between the Stars? The answer is yes! And that “stuff” forms some of the most beautiful objects.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
Starlight and Atoms Chapter 6. The Amazing Power of Starlight Just by analyzing the light received from a star, astronomers can retrieve information about.
Radio Waves Interaction With Interstellar Matter
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Problem 1 Why is the Sky blue?. Scattering efficiency ω 4 ∞ So the higher the frequency the stronger the scattering Blue light is much more strongly scattered.
Harry Kroto 2004 Sodium Flame Test. © at: commons.wikimedia.org/wiki/File:Flametest--Na...commons.wikimedia.org/wiki/File:Flametest--Na...
Molecular Interstellar Absorption toward the Pleiades Star Cluster Adam Ritchey Department of Physics & Astronomy University of Toledo June 21, 2006.
4-Level Laser Scheme nn  m  →  n  excitation  n  →  m  radiative decay slow  k  →  l  fast(ish)  l  →  m  fast to maintain population.
Bill Madden  = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Square of the transition moment  n  e  m  2 2.Frequency.
Harry Kroto 2004 Candle Flame.
AST101 Lecture 20 The Parts of the Galaxy. Shape of the Galaxy.
Spectroscope focused on a Bunsen flame. The sodium flame test.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Spiral Galaxy - Canis Venitici We can only see about 1/6 (ca 6000ly) of the way to the Galctic Centre due to scattering by gas and dust in the disk.
H Atom 21 cm Line. Is the Milky Way a Spiral Galaxy like this one?
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 
Harry Kroto The masers usually switch of after ca 3 days.
Chem-To-Go Lesson 7 Unit 2 ENERGY OF ELECTRONS. ENERGY BASICS All energy travels in the form of a wave. Scientists measure the wavelength of a wave to.
Astro 18 – Section Week 2 EM Spectrum. ElectroMagnetic Radiation Energy moves in waves with electrical and magnetic components Energy moves in waves with.
Of Marching Bands and Interstellar Clouds Lorne Avery Nov. 6, 2002 Some slides courtesy Wayne Holland, UKATC.
MOLECULAR SPECTROSCOPY
© HCCCCCNHCCCCCN A rotating dipolar molecule generates radio waves that can be detected by microwave spectroscopy.
Chemistry 213 Practical Spectroscopy
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
Fermi’s Golden Rule Io I l Harry Kroto 2004.
Spectroscopy from Space
The Bohr Model of the Atom
Only three lines observed R(0) R(1) P(1)
Queen Magazine Harry Kroto 2004.
Analytical methods Prepared By Dr. Biswajit Saha.
Atomic Absorption Spectroscopy
Raman Spectroscopy A) Introduction IR Raman
Einstein Coefficients
The Discovery of the Interstellar Medium (ISM)
The ISM and Stellar Birth
5.4 Learning from Light Our goals for learning
Rigid Diatomic molecule
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
H’(t)=E-M field D  = - fi Transition dipole moment.
Queen Magazine Harry Kroto 2004.
Spectroscopy Uses emission and absorption of light by electrons moving between ground and excited state configuration, hence electronic configuration.
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
5.4 Learning from Light Our goals for learning
Molecules Harry Kroto 2004.
Electromagnetic Radiation
The selection rules for vibration rotation transitions are
 = (4/3ħc) n em2  (Nm-Nn) (o-)
Astro 18 – Section Week 2 EM Spectrum.
Harry Kroto 2004.
Far infrared rotational spectrum of CO J= B
 l .  l   l   l   l  Io.
©.
The Discovery of the Interstellar Medium (ISM)
Presentation transcript:

Doppler Shifts of Interstellar NaD lines 589.00 589.59 (nm) / = / = v/c Harry Kroto 2004

The Discovery of the Interstellar Medium (ISM) Harry Kroto 2004

Harry Kroto 2004

Hartman 1904 K Ti Fe Ca Na T (100K) Binary Diffuse cloud Harry Kroto 2004

Blue Shifted Red Shifted Harry Kroto 2004

Blue Shifted Red Shifted Harry Kroto 2004

Several clouds in the line of sight Harry Kroto 2004

Doppler Shifts in Interstellar lines / = / = v/c Harry Kroto 2004

Absorption of Interstellar CN radicals in a Stellar Spectrum Harry Kroto 2004

Interstellar CN radicals H-C≡N → H. + .C≡N hν .CN Binary Diffuse cloud Harry Kroto 2004

ΔE Harry Kroto 2004

ΔE n0 population of ground state Harry Kroto 2004

ΔE n1 population of excited state n0 population of ground state Harry Kroto 2004

ΔE Boltzmann Equation n1 population of excited state n0 population of ground state Harry Kroto 2004

ΔE n1 = noe –ΔE/kT Boltzmann Equation n1 population of excited state n0 population of ground state n1 = noe –ΔE/kT Harry Kroto 2004

This is one of the most important equations of all Boltzmann Equation This is one of the most important equations of all n1 = noe –ΔE/kT Harry Kroto 2004

This is one of the most important equations of all Boltzmann Equation This is one of the most important equations of all so remember it n1 = noe –ΔE/kT Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) 2 J’ Only three lines observed R(0) R(1) P(1) 1 R(0) 2 J” 1 Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) 2 J’ Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T > 0 K 1 R(1) R(0) 2 J” 1 Harry Kroto 2004

2 J’ 1 P(1) R(1) R(0) 2 J” 1 Harry Kroto 2004

I ∞ n The intensity I of an absorption line is proportional to n - the number of molecules in the lower state Harry Kroto 2004

Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ R(1)/R(0) = (⅔) N1/N0 Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ R(1)/R(0) = (⅔) N1/N0 = IR(1)/IR(1) Harry Kroto 2004

(⅔)(N1/N0) = I1/I0 Harry Kroto 2004

(⅔)(N1/N0) = I1/I0 N1/N0 = (3/2)(I1/I0) Harry Kroto 2004

(⅔)(N1/N0) = I1/I0 N1/N0 = (3/2)(I1/I0) NJ = N0(2J+1)e – BJ(J+1)/kT Harry Kroto 2004

(⅔)(N1/N0) = I1/I0 N1/N0 = (3/2)(I1/I0) NJ = N0(2J+1)e – BJ(J+1)/kT N1/N0 = 3 e –2B/kT Harry Kroto 2004

(⅔)(N1/N0) = I1/I0 N1/N0 = (3/2)(I1/I0) NJ = N0(2J+1)e – BJ(J+1)/kT N1/N0 = 3 e –2B/kT 2B = 113.5 GHz Harry Kroto 2004

(⅔)(N1/N0) = I1/I0 N1/N0 = (3/2)(I1/I0) NJ = N0(2J+1)e – BJ(J+1)/kT N1/N0 = 3 e –2B/kT 2B = 113.5 GHz (3/2)(29/86) = 3e-113.5/20.85T Harry Kroto 2004

(⅔)(N1/N0) = I1/I0 N1/N0 = (3/2)(I1/I0) NJ = N0(2J+1)e – BJ(J+1)/kT N1/N0 = 3 e –2B/kT 2B = 113.5 GHz (3/2)(29/86) = 3e-113.5/20.85T I1/I0 = 2 e-113.5/20.85T Harry Kroto 2004

Problem Determine the temperature of interstellar CN radicals by measuring the ratio of the heights of the R(1) and R(0) lines = I1/I0 I1/I0 = 2e – [F(1) - F(0)]/kT k = 20.85 if F(J) in GHz For the CO molecule B = 56.75 GHz Thus determine T (K) R(1) R(0) J =1 J = 0 F(J) = BJ(J+1) Harry Kroto 2004

Harry Kroto 2004

Problem Determine the temperature of interstellar CN radicals by measuring the ratio of the heights of the R(1) and R(0) lines = I1/I0 I1/I0 = 2e – [F(1) - F(0)]/kT k = 20.85 if F(J) in GHz For the CO molecule B = 56.75 GHz Thus determine T (K) R(1) R(0) J =1 J = 0 F(J) = BJ(J+1) Harry Kroto 2004

35/105 = 0.336538461538461538461538461538 Harry Kroto 2004

29/176 = 0.165 = e-113.5/20.85T ln 0.165 = -113.5/20.85T -1.802 = -113.5/20.85T T = 113.5/(1.802 x 20.85) = 3.02 K error ca 3-4% k = 0.695 cm-1 or 20.85 GHz 1 cm-1 = 30 GHz Harry Kroto 2004

29/176 = 0.165 = e-113.5/20.85T ln 0.165 = -113.5/20.85T -1.802 = -113.5/20.85T T = 113.5/(1.802 x 20.85) = 3.02 K error ca 3-4% k = 0.695 cm-1 or 20.85 GHz 1 cm-1 = 30 GHz Harry Kroto 2004

(⅔)(N1/N0) = 29/86 N1/N0 = (3/2)(29/86) NJ = N0(2J+1)e – BJ(J+1)/kT N1/N0 = 3 e –2B/kT 2B = 113.5 GHz (3/2)(29/86) = 3e-113.5/20.85T 29/176 = e-113.5/20.85T = 0.165 Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) 2 J’ Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T > 0 K 1 P(1) R(1) R(0) 2 J” 1 Harry Kroto 2004

Absorption of Interstellar CN radicals in a Stellar Spectrum Harry Kroto 2004

Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) 2 J’ Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T > 0 K 1 P(1) R(1) R(0) 2 J” 1 Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) 2 J’ Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T > 0 K 1 P(1) R(1) R(0) 2 J” 1 Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) 2 J’ Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T > 0 K 1 P(1) R(1) R(0) 2 J” 1 Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) 2 J’ Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T > 0 K 1 P(1) R(1) R(0) 2 J” 1 Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) 2 J’ Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T > 0 K 1 P(1) R(1) R(0) 2 J” 1 Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) 2 J’ Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T > 0 K 1 P(1) R(1) R(0) 2 J” 1 Harry Kroto 2004

IR(1) /IR(0) ~ 29/86 = 0.337 [Measured in mm] Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) Io - I = I ~ l Harry Kroto 2004

IR(1) /IR(0) ~ R(1) /R(0) Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

IR(1) /IR(0) ~ R(1) /R(0) Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

IR(1) /IR(0) ~ R(1) /R(0) Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

IR(1) /IR(0) ~ R(1) /R(0) Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

IR(1) /IR(0) ~ R(1) /R(0) 29/86 = 0.337 [Measured in mm] Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) Nn = 0 R(1) ~ R(0) the Hönl London formulae J+1 eJ2  SR(J) J eJ+12  SP(J) R(1)  SR(1)N1 R(0)  SR(0)N0 SR(J) = (2J+2)/(2J+1) Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) Nn = 0 R(1) ~ R(0) the Hönl London formulae J+1 eJ2  SR(J) J eJ+12  SP(J) R(1)  SR(1)N1 R(0)  SR(0)N0 SR(J) = (2J+2)/(2J+1) Harry Kroto 2004

Two serendipitous radio discoveries Harry Kroto 2004

Harry Kroto 2004

Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame v’= 0 C + N v”=3 2 1 r  Harry Kroto 2004

Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

J’+ 1 B’ (J+ 1)(J+2) R(J) P(1) B” J (J+ 1) J” R Branch If B” ~ B’ o + 2B J Harry Kroto 2004

J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch R(0) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch R(1) R(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch R(2) R(2) R(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch R(3) R(3) R(2) R(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch R(3) R(3) R(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch R(3) R(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch R(3) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch P(4) P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 Central section of the P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 Central section of the CN 0-0 Band R Branch P Branch Harry Kroto 2004

Harry Kroto 2004

Electronic Emission Spectrum 3883 Å 4216 Å 4606 Å CN Violet Electronic Emission Spectrum 0-1 0-2 0-0 R(0) P(1) R Branch P Branch 25850 25750 cm-1 25750 cm-1 Rotational Structure of the 0-0 band of CN at 3883Å observed from Comet Bennett (1970 II) Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) Nn = 0 R(1) ~ R(0) the Hönl London formulae J+1 eJ2  SR(J) J eJ+12  SP(J) R(1)  SR(1)N1 R(0)  SR(0)N0 SR(J) = (2J+2)/(2J+1) Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) Nn = 0 R(1) ~ R(0) the Hönl London formulae J+1 eJ2  SR(J) J eJ+12  SP(J) R(1)  SR(1)N1 R(0)  SR(0)N0 SR(J) = (2J+2)/(2J+1) Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) Nn = 0 R(1) ~ R(0) the Hönl London formulae J+1 eJ2  SR(J) J eJ+12  SP(J) R(1)  SR(1)N1 R(0)  SR(0)N0 SR(J) = (2J+2)/(2J+1) Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) Nn = 0 R(1) ~ R(0) the Hönl London formulae J+1 eJ2  SR(J) J eJ+12  SP(J) R(1)  SR(1)N1 R(0)  SR(0)N0 R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) Nn = 0 R(1) ~ R(0) the Hönl London formulae J+1 eJ2  SR(J) J eJ+12  SP(J) R(1)  SR(1)N1 R(0)  SR(0)N0 R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ R(1)/R(0) = (⅔) N1/N0 = IR(1)/IR(1) = 29/86 Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ R(1)/R(0) = (⅔) N1/N0 = IR(1)/IR(1) = 29/86 Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ R(1)/R(0) = (⅔) N1/N0 = IR(1)/IR(1) = 29/86 Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ R(1)/R(0) = (⅔) N1/N0 = IR(1)/IR(1) = 29/86 Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ R(1)/R(0) = (⅔) N1/N0 = IR(1)/IR(1) = 29/86 Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ R(1)/R(0) = (⅔) N1/N0 = IR(1)/IR(1) = 29/86 Harry Kroto 2004

R(1)/R(0) = SR(1)N1/SR(0)N0 SR(J) = (2J+2)/(2J+1) so for the R(1) and R(0) lines SR(1) = 4/3 SR(0) = 2/1 SR(1)/SR(0) = ⅔ R(1)/R(0) = (⅔) N1/N0 = IR(1)/IR(1) = I(1)/I(0) Harry Kroto 2004

(⅔)(N1/N0) = 29/86 N1/N0 = (3/2)(29/86) NJ = N0(2J+1)e – BJ(J+1)/kT N1/N0 = 3 e –2B/kT 2B = 113.5 GHz (3/2)(29/86) = 3e-113.5/20.85T 29/176 = e-113.5/20.85T = 0.165 Harry Kroto 2004

(⅔)(N1/N0) = 29/86 N1/N0 = (3/2)(29/86) NJ = N0(2J+1)e – BJ(J+1)/kT N1/N0 = 3 e –2B/kT 2B = 113.5 GHz (3/2)(29/86) = 3e-113.5/20.85T 29/176 = e-113.5/20.85T = 0.165 Harry Kroto 2004

(⅔)(N1/N0) = 29/86 N1/N0 = (3/2)(29/86) NJ = N0(2J+1)e – BJ(J+1)/kT N1/N0 = 3 e –2B/kT 2B = 113.5 GHz (3/2)(29/86) = 3e-113.5/20.85T 29/176 = e-113.5/20.85T = 0.165 Harry Kroto 2004

29/176 = 0.165 = e-113.5/20.85T ln 0.165 = -113.5/20.85T -1.802 = -113.5/20.85T T = 113.5/(1.802 x 20.85) = 3.02 K k = 0.695 cm-1 or 20.85 GHz 1 cm-1 = 30 GHz Harry Kroto 2004

29/176 = 0.165 = e-113.5/20.85T ln 0.165 = -113.5/20.85T -1.802 = -113.5/20.85T T = 113.5/(1.802 x 20.85) = 3.02 K k = 0.695 cm-1 or 20.85 GHz 1 cm-1 = 30 GHz Harry Kroto 2004

29/176 = 0.165 = e-113.5/20.85T ln 0.165 = -113.5/20.85T -1.802 = -113.5/20.85T T = 113.5/(1.802 x 20.85) = 3.02 K k = 0.695 cm-1 or 20.85 GHz 1 cm-1 = 30 GHz Harry Kroto 2004

29/176 = 0.165 = e-113.5/20.85T ln 0.165 = -113.5/20.85T -1.802 = -113.5/20.85T T = 113.5/(1.802 x 20.85) = 3.02 K k = 0.695 cm-1 or 20.85 GHz 1 cm-1 = 30 GHz Harry Kroto 2004

29/176 = 0.165 = e-113.5/20.85T ln 0.165 = -113.5/20.85T -1.802 = -113.5/20.85T T = 113.5/(1.802 x 20.85) = 3.02 K k = 0.695 cm-1 or 20.85 GHz 1 cm-1 = 30 GHz Harry Kroto 2004

29/176 = 0.165 = e-113.5/20.85T ln 0.165 = -113.5/20.85T -1.802 = -113.5/20.85T T = 113.5/(1.802 x 20.85) = 3.02 K error ca 3-4% k = 0.695 cm-1 or 20.85 GHz 1 cm-1 = 30 GHz Harry Kroto 2004

“…restricted meaning” ! Harry Kroto 2004