A topological approach to watersheds

Slides:



Advertisements
Similar presentations
Segmentation by Morphological Watersheds
Advertisements

Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
Provides mathematical tools for shape analysis in both binary and grayscale images Chapter 13 – Mathematical Morphology Usages: (i)Image pre-processing.
Lectures on Network Flows
Chapter 8-3 Markov Random Fields 1. Topics 1. Introduction 1. Undirected Graphical Models 2. Terminology 2. Conditional Independence 3. Factorization.
International Workshop on Computer Vision - Institute for Studies in Theoretical Physics and Mathematics, April , Tehran 1 IV COMPUTING SIZE.
Lists A list is a finite, ordered sequence of data items. Two Implementations –Arrays –Linked Lists.
Graphs and Trees This handout: Trees Minimum Spanning Tree Problem.
Lower Bounds on the Distortion of Embedding Finite Metric Spaces in Graphs Y. Rabinovich R. Raz DCG 19 (1998) Iris Reinbacher COMP 670P
CS 326 A: Motion Planning robotics.stanford.edu/~latombe/cs326/2003/index.htm Configuration Space – Basic Path-Planning Methods.
Graph Algorithms Using Depth First Search Prepared by John Reif, Ph.D. Distinguished Professor of Computer Science Duke University Analysis of Algorithms.
Cross-section topology Michel Couprie Contributors: G. Bertrand M. Couprie J.C. Everat (PhD) F.N. Bezerra (PhD)
Linked Edges as Stable Region Boundaries* Michael Donoser, Hayko Riemenschneider and Horst Bischof This work introduces an unsupervised method to detect.
Algorithms for Network Optimization Problems This handout: Minimum Spanning Tree Problem Approximation Algorithms Traveling Salesman Problem.
Chapter 10, Part IV.  Definitions: ◦ Let M 1, M 2 ….M R be sets denoting the coordinates of the points in the regional. ◦ Let C(M i ) be a set denoting.
Chapter 9.  Mathematical morphology: ◦ A useful tool for extracting image components in the representation of region shape.  Boundaries, skeletons,
GRAPHS CSE, POSTECH. Chapter 16 covers the following topics Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component,
Digital Image Processing Lecture 19: Segmentation: Morphological Watersheds Prof. Charlene Tsai.
1 Digital topology and cross-section topology for grayscale image processing M. Couprie A 2 SI lab., ESIEE Marne-la-Vallée, France
Mathematical Morphology Mathematical morphology (matematická morfologie) –A special image analysis discipline based on morphological transformations of.
Mathematical Morphology
GRAPHS. Graph Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree Types of graphs: undirected,
References Books: Chapter 11, Image Processing, Analysis, and Machine Vision, Sonka et al Chapter 9, Digital Image Processing, Gonzalez & Woods.
Graphs Basic properties.
Allan Hanbury Mathematical Morphology: from Erosion to Watersheds PRIP, Vienna University of Technology Favoritenstraße 9/1832 A-1040 Vienna, Austria
CDS 301 Fall, 2008 Image Visualization Chap. 9 November 11, 2008 Jie Zhang Copyright ©
1 Assignment #3 is posted: Due Thursday Nov. 15 at the beginning of class. Make sure you are also working on your projects. Come see me if you are unsure.
Graphs Definition: a graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected.
MA5209 Algebraic Topology Wayne Lawton Department of Mathematics National University of Singapore S ,
1 GRAPH Learning Outcomes Students should be able to: Explain basic terminology of a graph Identify Euler and Hamiltonian cycle Represent graphs using.
Some links between min-cuts, optimal spanning forests and watersheds Cédric Allène, Jean-Yves Audibert, Michel Couprie, Jean Cousty & Renaud Keriven ENPC.
1 GRAPHS – Definitions A graph G = (V, E) consists of –a set of vertices, V, and –a set of edges, E, where each edge is a pair (v,w) s.t. v,w  V Vertices.
Lecture z Chapter 10: Image Segmentation. Segmentation approaches 1) Gradient based: How different are pixels? 2) Thresholding: Converts grey-level images.
Introduction to Graph & Network Theory Thinking About Networks: From Metabolism to the Genome to Social Conflict Summer Workshop for Teachers June 27 th.
4.6.1 Upper Echelons of Surfaces
Application 2 Detect Filarial Worms SourceBTTRemove NoisesThreshold Skeleton Eliminate short structures ReconstructionFinal result.
Digital Image Processing CP-7008 Lecture # 09 Morphological Image Processing Fall 2011.
Chapter 5 : Trees.
Minimum Spanning Tree Chapter 13.6.
The countable character of uncountable graphs François Laviolette Barbados 2003.
Michael Langberg: Open University of Israel
Minimum Spanning Tree 8/7/2018 4:26 AM
Lectures on Network Flows
Great Theoretical Ideas in Computer Science
Greedy Algorithms / Minimum Spanning Tree Yin Tat Lee
One-to-One Functions and Inverse Functions
CS202 - Fundamental Structures of Computer Science II
Graph Algorithms Using Depth First Search
Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. {image}
Discrete Mathematics for Computer Science
Section 5.4 Theorems About Definite Integrals
Graphs Chapter 13.
CS Digital Image Processing Lecture 5
3.5 Minimum Cuts in Undirected Graphs
CS 583 Analysis of Algorithms
Discrete Math II Howon Kim
Neutrosophic Mathematical Morphology for Medical Image
Functions Defined on General Sets
Discrete Surfaces and Manifolds: A Potential tool to Image Processing
Quasi-linear algorithms for the topological watershed
Discrete Mathematics Lecture 13_14: Graph Theory and Tree
A new definition for the dynamics
Lecture 14 Shortest Path (cont’d) Minimum Spanning Tree
Lecture # 18 Types of Functions
Chapter 14 Graphs © 2011 Pearson Addison-Wesley. All rights reserved.
CS654: Digital Image Analysis
Lecture 13 Shortest Path (cont’d) Minimum Spanning Tree
Binhai Zhu Computer Science Department, Montana State University
Graph Traversals Some applications require visiting every vertex in the graph exactly once. The application may require that vertices be visited in some.
Presentation transcript:

A topological approach to watersheds G. Bertrand Laboratoire A2SI, ESIEE www.esiee.fr/a2si Paris 27/05/2003

To our knowledge there is no framework in which general properties for watersheds can be derived Our goal is to show that the topological approach proposed previously* provides such a framework *M. Couprie and G. Bertrand (1997) Paris 27/05/2003

Watersheds Powerful segmentation operator from the field of Mathematical Morphology Introduced as a tool for segmenting grayscale images by S. Beucher, H. Digabel and C. Lantuejoul in the 70s Efficient algorithms based on flooding simulation were proposed by F. Meyer, P. Soille, L. Vincent (and others) in the 90s Paris 27/05/2003

Flooding paradigm Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 20 1 40 40 3 3 5 5 30 30 30 10 15 1 15 20 1 40 40 3 3 5 30 20 20 20 30 15 1 15 1 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 1 10 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 15 1 20 15 1 10 5 1 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 There is no descending path from the 20s to the minimum 3 The contrast between minima is not preserved Paris 27/05/2003

Discrete sets and destructible points Let G = (V,E) be a (undirected) graph and let X be a subset of V. We say that a point x  X is destructible for X if x is adjacent to exactly one connected component of X. M. Couprie and G. Bertrand (1997) Paris 27/05/2003

Destructible point Paris 27/05/2003

Destructible point Paris 27/05/2003

Destructible point Paris 27/05/2003

Destructible point Paris 27/05/2003

Destructible point Paris 27/05/2003

Destructible point Paris 27/05/2003

Destructible point Paris 27/05/2003

Destructible point Paris 27/05/2003

Destructible point Paris 27/05/2003

Destructible point Paris 27/05/2003

Discrete maps and destructible points Let G = (V,E) be a connected (undirected) graph. We denote by F (V) the family composed of all maps from V to Z. Let F  F (V), we set Fk = {x  V; F(x)  k}, Fk is the cross-section of F at level k Let x  V and let k = F(x). We say that x is destructible (for F) if x is adjacent to exactly one connected component of Fk M. Couprie and G. Bertrand (1997) Paris 27/05/2003

Topological watershed Let F and F’ be in F (V). We say that F’ is a thinning of F if F’ may be obtained from F by iteratively lowering destructible points (by 1). Let F and F’ be in F (V). We say that F’ is a watershed of F if F’ is a thinning of F and if there is no destructible point for F’. M. Couprie and G. Bertrand (1997) Paris 27/05/2003

Collapsing paradigm Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 1 20 30 3 3 3 40 40 30 30 30 1 1 20 30 30 30 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 The watershed is located on the crest lines of the original image The contrast between minima is preserved Paris 27/05/2003

Pass value Let F be in F (V). If п is a path, we set F(п) = Max{F(x); x  п}. Let x, y in V. We set F(x,y) = Min {F(п); п  п(x,y)}, F(x,y) is the pass value between x and y. Let X and Y be two subsets of V. We set F(X,Y) = Min{F(x,y); x  X and y  Y}. Paris 27/05/2003

Separation Let F be in F (V) and let x and y be in V. We say that x and y are separated (for F) if F(x,y) > Max{F(x),F(y)}. We say that x and y are k-separated (for F) if x and y are separated and F(x,y) = k. Let F and F’ be in F (V) such that F’  F. We say that F’ is a separation of F if, for all x,y in V, if x and y are k-separated for F, then x and y are k-separated for F’. Paris 27/05/2003

k-separation y x x and y are 20-separated 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 x y 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

x and y are NOT separated (they are linked) k-separation x and y are NOT separated (they are linked) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 x y 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Theorem (restriction to minima) Let F and F’ be in F (V) such that F’  F. The map F’ is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = F’(X,Y). Paris 27/05/2003

Theorem (strong separation) Let F and F’ be in F (V) such that F’  F. The map F’ is a thinning of F if and only if F’ is a strong separation of F. Paris 27/05/2003

2D case Any connected object without hole reduces to one point Paris 27/05/2003

Bing’s house with two rooms 3D case Some connected objects without holes and cavities DO NOT reduce to one point Bing’s house with two rooms Paris 27/05/2003

Theorem (restriction to minima) Let F and F’ be in F (V) such that F’  F. The map F’ is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = F’(X,Y). Paris 27/05/2003

Theorem (restriction to minima) Let F and F’ be in F (V) such that F’  F. The map F’ is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = F’(X,Y). Is it possible to reduce the amount of information necessary to encode the  "topology" of a thinning? Paris 27/05/2003

Ordered minima Let F be in F (V). A minima ordering (for F) is a strict total order relation < on the minima of F. Let X be a minimum for F. The pass value of X for (F,<) is the number F(X,<) such that: i) if X = Xmin, then F(X,<) = infinity; ii) otherwise, F(X,<) = Min {F(X,Y); for all minima Y such that Y < X}. Paris 27/05/2003

Ordered minima F(.,<)=8 5 3 2 F(.,<)=22 F(.,<)=30 1 4 40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 F(.,<)=22 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=infty F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Theorem (ordered minima) Let F and F’ be in F (V) such that F’ <= F and let < be a minima ordering for F. The map F’ is a separation of F if and only if, for each minimum X for F, we have F(X,<) = F’(X,<). Paris 27/05/2003

<-map F(.,<)=8 5 3 2 F(.,<)=22 F(.,<)=30 1 4 F(.,<)=0 40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 F(.,<)=22 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=0 F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Theorem (reconstruction from ordered pass values) Let F be in F (V) and let < be a minima ordering for F. Let T be a tree associated to F(X,<). The pass values between all minima of F may be reconstructed from T. Paris 27/05/2003

Dynamics (M. Grimaud,1992) Let X be a minimum for F. Let G(X) be the number such that: i) if X = Xmin, then G(X) = infinity; ii) otherwise, G(X) = Min {F(X,Y); for all minima Y such that F(Y) < F(X)}. The dynamics of a minimum X is the number Dyn(X) = G(X) – F(X) Paris 27/05/2003

Ordered dynamics The notion of ordered pass values leads to a new definition of the dynamics of a minimum: Dyn(X; F, <) = F(X, <) – F(X) This new definition of dynamics fully agrees with the notion of separation. Paris 27/05/2003

Dynamics: counter-example Paris 27/05/2003

Dynamics: counter-example Paris 27/05/2003

Ordered minima 2 3 1 Paris 27/05/2003

Conclusion Basins, component tree Duality: minimum spanning trees Comparison of existing algorithms (L. Najman and M. Couprie) Algorithmic issues (M. Couprie and L. Najman) Saliency (L. Najman) Paris 27/05/2003

Results of watershed algorithms 4 5 B 6 3 1 C 2 Topographical 3 4 5 6 2 1 Original image A B 6 1 C 3 5 Vincent-Soille, Meyer and Topological Paris 27/05/2003

Results of watershed algorithms 30 3 31 4 255 2 1 5 30 C 31 D E A 255 B F Original image Vincent-Soille 30 C E D A 255 B F 30 C 31 D 255 A E B F Meyer Topological Paris 27/05/2003

Results of watershed algorithms 2 1 30 20 40 A B 1 C 20 40 Original image Vincent-Soille A B 1 20 40 A A A A A A 1 A A A 30 30 30 A A 1 A 30 B 20 A 30 A 1 40 B B 20 A A 40 B B B 20 A A 1 A B B B 20 A A A B B 1 B 20 1 A A 1 A Paris 27/05/2003 Meyer Topological

Homotopy: an illustration F(x,y) G(x,y) F1 G1 x x Paris 27/05/2003

Homotopy: an illustration F(x,y) G(x,y) x x F2 G2 F1 G1 Paris 27/05/2003

Watershed transform Paris 27/05/2003

Flooding paradigm Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 1 15 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 5 1 5 1 40 40 1 3 5 10 15 1 20 1 15 10 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 1 15 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 15 1 20 1 15 10 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 There is no descending path from the 20s to the minimum 3 Any path from 0 to the minimum 3 must climb at least at 30 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 20 1 40 40 3 3 5 5 30 30 30 10 15 1 15 20 1 40 40 3 3 5 30 20 20 20 30 15 1 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 1 10 10 1 40 40 5 5 5 10 40 20 40 10 10 5 1 1 5 40 40 1 3 5 10 1 15 20 1 15 10 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 20 1 40 40 3 3 5 5 30 30 30 10 15 1 15 20 1 40 40 3 3 5 30 20 20 20 30 15 1 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 1 10 10 1 40 40 5 5 5 10 40 20 40 10 10 5 1 1 5 40 40 1 3 5 10 1 15 20 1 15 10 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Topological watershed 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 1 20 30 3 3 3 40 40 30 30 30 1 1 20 30 30 30 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 The watershed is located on the crest lines of the original image The contrast between minima is preserved Paris 27/05/2003

k-separation y x x and y are 8-separated 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 x y 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

x and y are NOT separated (they are linked) k-separation x and y are NOT separated (they are linked) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 x y 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Homotopic thinning Paris 27/05/2003

Homotopic thinning Paris 27/05/2003

Homotopic thinning Paris 27/05/2003

Homotopic thinning Paris 27/05/2003

Homotopic thinning Paris 27/05/2003

Homotopic thinning Paris 27/05/2003

Homotopic thinning Paris 27/05/2003

Homotopic thinning Paris 27/05/2003

Homotopic thinning Paris 27/05/2003

Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003

Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 F(X,Y) = 31 Paris 27/05/2003

Pass value 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 8 3 10 5 25 5 20 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 30 31 40 6 6 40 6 11 11 11 25 4 4 4 40 31 30 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003 31