Anne L. Sapiro, Patricia Deng, Rui Zhang, Jin Billy Li  Cell Reports 

Slides:



Advertisements
Similar presentations
Pol II Docking and Pausing at Growth and Stress Genes in C. elegans
Advertisements

Volume 16, Issue 8, Pages (August 2016)
Differential Expression of Circular RNAs in Glioblastoma Multiforme and Its Correlation with Prognosis  Junle Zhu, Jingliang Ye, Lei Zhang, Lili Xia,
Volume 20, Issue 13, Pages (September 2017)
Volume 19, Issue 12, Pages (June 2017)
Global Mapping of Human RNA-RNA Interactions
Super-Enhancers at the Nanog Locus Differentially Regulate Neighboring Pluripotency- Associated Genes  Steven Blinka, Michael H. Reimer, Kirthi Pulakanti,
Volume 11, Issue 2, Pages (August 2012)
Taichi Umeyama, Takashi Ito  Cell Reports 
Volume 51, Issue 3, Pages (August 2013)
Transient N-6-Methyladenosine Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency  Annita Louloupi, Evgenia Ntini, Thomas.
Shiran Bar, Maya Schachter, Talia Eldar-Geva, Nissim Benvenisty 
Formation of Chromosomal Domains by Loop Extrusion
Impulse Control: Temporal Dynamics in Gene Transcription
Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels  Ronald J. Hause, Amy L. Stark,
Volume 3, Issue 4, Pages (April 2013)
Molecular Therapy - Nucleic Acids
Adrien Le Thomas, Georgi K. Marinov, Alexei A. Aravin  Cell Reports 
Volume 33, Issue 4, Pages e6 (April 2018)
Volume 15, Issue 8, Pages (May 2016)
Volume 17, Issue 5, Pages (October 2016)
Volume 16, Issue 8, Pages (August 2016)
Volume 11, Issue 4, Pages (April 2018)
Molecular Organization of Drosophila Neuroendocrine Cells by Dimmed
Volume 10, Issue 8, Pages (March 2015)
TED-Seq Identifies the Dynamics of Poly(A) Length during ER Stress
Integrative Multi-omic Analysis of Human Platelet eQTLs Reveals Alternative Start Site in Mitofusin 2  Lukas M. Simon, Edward S. Chen, Leonard C. Edelstein,
Joseph Rodriguez, Jerome S. Menet, Michael Rosbash  Molecular Cell 
Cell-Type-Specific Control of Enhancer Activity by H3K9 Trimethylation
Volume 3, Issue 2, Pages (February 2013)
An RpaA-Dependent Sigma Factor Cascade Sets the Timing of Circadian Transcriptional Rhythms in Synechococcus elongatus  Kathleen E. Fleming, Erin K. O’Shea 
Volume 88, Issue 4, Pages (November 2015)
Volume 8, Issue 6, Pages (September 2014)
Volume 67, Issue 6, Pages e6 (September 2017)
Volume 10, Issue 7, Pages (February 2015)
ELAC2 Mutations Cause a Mitochondrial RNA Processing Defect Associated with Hypertrophic Cardiomyopathy  Tobias B. Haack, Robert Kopajtich, Peter Freisinger,
Volume 9, Issue 5, Pages (November 2017)
Pol II Docking and Pausing at Growth and Stress Genes in C. elegans
Shiran Bar, Maya Schachter, Talia Eldar-Geva, Nissim Benvenisty 
Martin Mikl, Carrie R. Cowan  Cell Reports 
Baekgyu Kim, Kyowon Jeong, V. Narry Kim  Molecular Cell 
Volume 23, Issue 10, Pages (June 2018)
Volume 22, Issue 3, Pages (January 2018)
Volume 13, Issue 9, Pages (December 2015)
Volume 20, Issue 9, Pages (August 2017)
ADAR Regulates RNA Editing, Transcript Stability, and Gene Expression
Alterations in mRNA 3′ UTR Isoform Abundance Accompany Gene Expression Changes in Human Huntington’s Disease Brains  Lindsay Romo, Ami Ashar-Patel, Edith.
Volume 21, Issue 9, Pages (November 2017)
Volume 29, Issue 5, Pages (May 2016)
by Brian J. Liddicoat, Robert Piskol, Alistair M
Volume 13, Issue 6, Pages (November 2015)
Volume 23, Issue 4, Pages (April 2018)
Volume 9, Issue 3, Pages (November 2014)
Ismail Osman, Jun Wei Pek  Stem Cell Reports 
Zvi Tamari, Naama Barkai  Cell Reports 
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Maria S. Robles, Sean J. Humphrey, Matthias Mann  Cell Metabolism 
Volume 8, Issue 6, Pages (September 2014)
Volume 17, Issue 3, Pages (October 2016)
CaQTL analysis identifies genetic variants affecting human islet cis-RE use. caQTL analysis identifies genetic variants affecting human islet cis-RE use.
Volume 27, Issue 11, Pages e5 (June 2019)
Taichi Umeyama, Takashi Ito  Cell Reports 
Lessons from Enzyme Kinetics Reveal Specificity Principles for RNA-Guided Nucleases in RNA Interference and CRISPR-Based Genome Editing  Namita Bisaria,
Volume 10, Issue 2, Pages (January 2015)
Volume 4, Issue 5, Pages (September 2013)
Gregory L. Elison, Yuan Xue, Ruijie Song, Murat Acar  Cell Reports 
Volume 8, Issue 2, Pages (July 2014)
Volume 11, Issue 7, Pages (May 2015)
Mutational Analysis of Ionizing Radiation Induced Neoplasms
Volume 150, Issue 1, Pages (July 2012)
Presentation transcript:

Cis Regulatory Effects on A-to-I RNA Editing in Related Drosophila Species  Anne L. Sapiro, Patricia Deng, Rui Zhang, Jin Billy Li  Cell Reports  Volume 11, Issue 5, Pages 697-703 (May 2015) DOI: 10.1016/j.celrep.2015.04.005 Copyright © 2015 The Authors Terms and Conditions

Cell Reports 2015 11, 697-703DOI: (10.1016/j.celrep.2015.04.005) Copyright © 2015 The Authors Terms and Conditions

Figure 1 Determining RNA Editing Levels in D. melanogaster, D. sechellia, and Their F1 Hybrids (A) Cartoon illustrating the four samples collected and used in the study: 0- to 2-day-old females from D. melanogaster (red), D. sechellia (blue), and their F1 hybrids (purple) and a mixed-parent mapping control. Total RNA was extracted from ten heads for each sample. (B) Schematic of primer design and mmPCR-seq workflow. (C) Schematic of mapping F1 hybrid reads to their species of origin to call species-specific editing levels. (D) Scatterplots comparing editing levels in biological replicates from D. melanogaster and D. sechellia parents and hybrid alleles (see also Figure S1). (E) Scatterplots comparing separate parent and mixed-parent editing levels. Gray dot, replicates differ by ≥10% editing and site was excluded from subsequent analysis. Cell Reports 2015 11, 697-703DOI: (10.1016/j.celrep.2015.04.005) Copyright © 2015 The Authors Terms and Conditions

Figure 2 Differences in Editing Levels between Parents Are Largely Maintained in Hybrid Alleles (A) Scatterplot comparing editing levels between D. melanogaster and D. sechellia parents. (B) Scatterplot comparing editing levels between D. melanogaster and D. sechellia alleles in F1 hybrids. Red dot, D. melanogaster more highly edited. Blue dot, D. sechellia more highly edited. Black dot, no editing difference (Fisher’s exact tests; FDR = 5%). (C) Scatterplots comparing the difference in editing between parents versus the difference in editing between hybrid species-specific alleles. Purple dot, no change between parent and hybrid differences. Green dot, evidence of cis divergence. Blue dot, evidence of cis and trans divergence (FDR = 5%; see Experimental Procedures for statistical analysis). Right plot, magnification of points for clarity. Cell Reports 2015 11, 697-703DOI: (10.1016/j.celrep.2015.04.005) Copyright © 2015 The Authors Terms and Conditions

Figure 3 Cis Sequence Differences Surrounding Editing Sites Alter Editing Levels between Species (A) Amount of genomic sequence variants surrounding cis-affected editing sites versus unchanged editing sites, normalized by number of sites in each group (p value from one-sided Kolmogorov-Smirnov test). (B) Schematic of ECS (editing complementary sequence) prediction. ECS regions were predicted by folding the region around editing sites with RNAfold software (see Experimental Procedures). (C) Boxplot showing differences in free energy of RNA secondary structure between the two species. Purple, unchanged sites (n = 115). Red, cis-regulated sites with higher D. melanogaster editing (n = 12). Blue, cis regulated with higher D. sechellia editing (n = 9). p values from one-sided Mann-Whitney-U test (∗p value = 0.1; ∗∗∗p value = 0.001). (D) Two examples of secondary structure and editing level changes between species at cis sites as determined by ECS prediction script. Top, chr2L@11796346. Bottom, chr3R@10642469. Arrows indicate edited adenosine. Cell Reports 2015 11, 697-703DOI: (10.1016/j.celrep.2015.04.005) Copyright © 2015 The Authors Terms and Conditions

Figure 4 Differences in D. melanogaster and D. sechellia Adar Proteins Are Not Responsible for Editing Level Differences between the Species (A) Schematic highlighting amino acid differences between D. melanogaster and D. sechellia Adar proteins. (B) Schematic depicting the cross to create hybrid flies with only D. sechellia Adar using the Adar5G1 mutant (Palladino et al., 2000). (C) Scatterplots comparing editing levels between wild-type hybrids and Adar5G1/D.sec+ hybrids in D. melanogaster (left) and D. sechellia (right) alleles (see also Figure S3). Purple dot, wild-type hybrid more highly edited. Pink dot, Adar5G1/D.sec+ hybrid more highly edited (Fisher’s exact tests; FDR = 5%). (D) Adar expression by qPCR (left) and editing level measured from Sanger sequencing at Adar auto-regulatory editing site (right) in D. melanogaster and D. sechellia parents, wild-type hybrids, and Adar5G1/D.sec+ hybrids, relative to D. melanogaster parents. Error bars = SEM. (E) Expression of period and Fmr1 mRNAs in D. melanogaster, D. sechellia, and F1 hybrids measured by qPCR. Error bars = SEM. (F) Editing level and secondary structure changes between species at chr3R@1062097, which showed cis and trans effects. Arrows indicate edited adenosine. Cell Reports 2015 11, 697-703DOI: (10.1016/j.celrep.2015.04.005) Copyright © 2015 The Authors Terms and Conditions