Approximating distributions Binomial distribution Approximating distributions Normal distribution Poisson distribution Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial to Normal Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
Approximating the binomial distribution with a normal distribution has discrete data and looks like Normal has continuous data and looks like f 0.15 0.1 0.05 x 2 4 6 8 10 12 Approximating distributions: Nannestad
Approximating distributions: Nannestad Why bother? Tables are not readily available for large values of n. When n is large, and p is not too close to either 0 or 1, then the binomial values are reasonably symmetrical. In these conditions, the normal curve closely fits the binomial values. Approximating distributions: Nannestad
Approximating distributions: Nannestad How do we approximate a binomial distribution with a normal distribution? The mean of a binomial distribution with n terms and probability p is np, and the variance is np(1-p). Use these values as the mean and variance for a normal distribution. Approximating distributions: Nannestad
When is the normal approximation “good enough”? Look at the following examples. When is the normal curve “close enough” to the binomial distribution? Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.10 Normal: mean = 1.50, VAR = 1.35 f Binomial: n = 15, p = 0.10 0.3 Normal: mean = 1.50, VAR = 1.35 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0. 15 Normal: mean = 2.25, VAR = 1.91 f Binomial: n = 15, p = 0.15 0.3 Normal: mean = 2.25, VAR = 1.91 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.20 Normal: mean = 3.00, VAR = 2.40 f Binomial: n = 15, p = 0.20 0.3 Normal: mean = 3.00, VAR = 2.40 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.25 Normal: mean = 3.75, VAR = 2.81 f Binomial: n = 15, p = 0.25 0.3 Normal: mean = 3.75, VAR = 2.81 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.30 Normal: mean = 4.50, VAR = 3.15 f Binomial: n = 15, p = 0.30 0.3 Normal: mean = 4.50, VAR = 3.15 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.35 Normal: mean = 5.25, VAR = 3.41 f Binomial: n = 15, p = 0.35 0.3 Normal: mean = 5.25, VAR = 3.41 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.40 Normal: mean = 6.00, VAR = 3.60 f Binomial: n = 15, p = 0.40 0.3 Normal: mean = 6.00, VAR = 3.60 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.45 Normal: mean = 6.75, VAR = 3.71 f Binomial: n = 15, p = 0.45 0.3 Normal: mean = 6.75, VAR = 3.71 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.50 Normal: mean = 7.50, VAR = 3.75 f Binomial: n = 15, p = 0.50 0.3 Normal: mean = 7.50, VAR = 3.75 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.55 Normal: mean = 8.25, VAR = 3.71 f Binomial: n = 15, p = 0.55 0.3 Normal: mean = 8.25, VAR = 3.71 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.60 Normal: mean = 9.00, VAR = 3.60 f Binomial: n = 15, p = 0.60 0.3 Normal: mean = 9.00, VAR = 3.60 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.65 Normal: mean = 9.75, VAR = 3.41 f Binomial: n = 15, p = 0.65 0.3 Normal: mean = 9.75, VAR = 3.41 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.70 Normal: mean = 10.5, VAR = 3.15 f Binomial: n = 15, p = 0.70 0.3 Normal: mean = 10.5, VAR = 3.15 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.75 Normal: mean = 11.3, VAR = 2.81 f Binomial: n = 15, p = 0.75 0.3 Normal: mean = 11.3, VAR = 2.81 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.80 Normal: mean = 12.0, VAR = 2.40 f Binomial: n = 15, p = 0.80 0.3 Normal: mean = 12.0, VAR = 2.40 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.85 Normal: mean = 12.8, VAR = 1.91 f Binomial: n = 15, p = 0.85 0.3 Normal: mean = 12.8, VAR = 1.91 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.90 Normal: mean = 13.5, VAR = 1.35 f Binomial: n = 15, p = 0.90 0.3 Normal: mean = 13.5, VAR = 1.35 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.95 Normal: mean = 14.3, VAR = 0.71 f Binomial: n = 15, p = 0.95 0.3 Normal: mean = 14.3, VAR = 0.71 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad General guidelines We can approximate the binomial distribution with n terms and probability p with the corresponding normal distribution when both np5, and n(1-p)5. Approximating distributions: Nannestad
Approximating distributions: Nannestad For the example with n = 15 and p changes by 0.05 each time, this would require p values 0.35 p 0.65 Approximating distributions: Nannestad
What happens to the values when we change from discrete data to continuous data? In a binomial distribution we can have a probability for a single value. Example: For binomial n = 15, p = 0.40, P(X=4) = 0.1268. However, it is not possible to have proability for a single value in normal distribution. Example: Normal: mean = 6.00, VAR = 3.60, P(X=4) cannot exist. Why? Approximating distributions: Nannestad
The probability is calculated from the area under the normal curve. For the area to be other than zero we need to find the probability between two values Approximating distributions: Nannestad
Continuity correction When approximating a discrete distribution with one that is continuous we must apply a continuity correction. Original binomial distribution n = 30, p = 0.7 The value for P(X = 20) in the binomial distribution Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial to Normal Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial to Poisson Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
Approximating distributions: Nannestad When the binomial value for n is large and p is very small the event is considered “rare” and we can approximate values with the Poisson distribution. Approximating distributions: Nannestad
Approximating the binomial distribution with a poisson distribution has discrete data and looks like Poisson has disctrete data and looks like f 0.3 0.2 0.1 x Approximating distributions: Nannestad 2 4 6 8 10
Approximating distributions: Nannestad When? Why? How? When the value of p is too small for the tables, the probability of the event occuring is becoming “rare”. (np < 5 is a fair guide.) Binomial tables do not give the required values. Using np = , the binomial distribution values are approximated by the Poisson distribution. Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.005 Poisson: = 0.075 f 1 0.8 Binomial: n = 15, p = 0.005 Poisson: lamda = 0.075 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.010 Poisson: = 0.150 f 1 0.8 Binomial: n = 15, p = 0.010 Poisson: lamda = 0.150 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.015 Poisson: = 0.225 f 1 0.8 Binomial: n = 15, p = 0.015 Poisson: lamda = 0.225 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.020 Poisson: = 0.300 f 1 0.8 Binomial: n = 15, p = 0.020 Poisson: lamda = 0.300 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.025 Poisson: = 0.375 f 1 0.8 Binomial: n = 15, p = 0.025 Poisson: lamda = 0.375 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.030 Poisson: = 0.450 f 1 0.8 Binomial: n = 15, p = 0.030 Poisson: lamda = 0.450 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.035 Poisson: = 0.525 f 1 0.8 Binomial: n = 15, p = 0.035 Poisson: lamda = 0.525 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.040 Poisson: = 0.600 f 1 0.8 Binomial: n = 15, p = 0.040 Poisson: lamda = 0.600 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.045 Poisson: = 0.675 f 1 0.8 Binomial: n = 15, p = 0.045 Poisson: lamda = 0.675 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.050 Poisson: = 0.750 f 1 0.8 Binomial: n = 15, p = 0.050 Poisson: lamda = 0.750 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.055 Poisson: = 0.825 f 1 0.8 Binomial: n = 15, p = 0.055 Poisson: lamda = 0.825 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.060 Poisson: = 0.900 f 1 0.8 Binomial: n = 15, p = 0.060 Poisson: lamda = 0.900 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.065 Poisson: = 0.975 f 1 0.8 Binomial: n = 15, p = 0.065 Poisson: lamda = 0.975 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.070 Poisson: = 1.050 f 1 0.8 Binomial: n = 15, p = 0.070 Poisson: lamda = 1.050 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.075 Poisson: = 1.125 f 1 0.8 Binomial: n = 15, p = 0.075 Poisson: lamda = 1.125 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.080 Poisson: = 1.200 f 1 0.8 Binomial: n = 15, p = 0.080 Poisson: lamda = 1.200 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.085 Poisson: = 1.275 f 1 0.8 Binomial: n = 15, p = 0.085 Poisson: lamda = 1.275 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.090 Poisson: = 1.350 f 1 0.8 Binomial: n = 15, p = 0.090 Poisson: lamda = 1.350 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.095 Poisson: = 1.425 f 1 0.8 Binomial: n = 15, p = 0.095 Poisson: lamda = 1.425 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.100 Poisson: = 1.500 f 1 0.8 Binomial: n = 15, p = 0.100 Poisson: lamda = 1.500 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.15 Poisson: = 2.25 f 1 0.8 Binomial: n = 15, p = 0.15 Poisson: lamda = 2.25 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.20 Poisson: = 3.00 f 1 0.8 Binomial: n = 15, p = 0.20 Poisson: lamda = 3.00 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.25 Poisson: = 3.75 f 1 0.8 Binomial: n = 15, p = 0.25 Poisson: lamda = 3.75 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.30 Poisson: = 4.50 f 1 0.8 Binomial: n = 15, p = 0.30 Poisson: lamda = 4.50 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.35 Poisson: = 5.25 f 1 0.8 Binomial: n = 15, p = 0.35 Poisson: lamda = 5.25 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.40 Poisson: = 6.00 f 1 0.8 Binomial: n = 15, p = 0.40 Poisson: lamda = 6.00 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.45 Poisson: = 6.75 f 1 0.8 Binomial: n = 15, p = 0.45 Poisson: lamda = 6.75 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0. 50 Poisson: = 7.50 f 1 0.8 Binomial: n = 15, p = 0.50 Poisson: lamda = 7.50 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.55 Poisson: = 8.25 f 1 0.8 Binomial: n = 15, p = 0.55 Poisson: lamda = 8.25 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.60 Poisson: = 9.00 f 1 0.8 Binomial: n = 15, p = 0.60 Poisson: lamda = 9.00 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial: n = 15, p = 0.65 Poisson: = 9.75 f 1 0.8 Binomial: n = 15, p = 0.65 Poisson: lamda = 9.75 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
Approximating distributions: Nannestad Binomial to Poisson Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson to Normal Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
Approximating the Poisson distribution with a normal distribution has discrete data and looks like Normal has continuous data and looks like 0.2 f 0.2 f 0.15 0.15 0.1 0.1 0.05 0.05 x x 5 10 15 20 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Why? When n is large and >20 the poisson distribution is closely approximated by the normal distribution. This is a reason tables do not have values bigger than 20. Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 9.00 Normal: mean = 12.8, VAR = 1.91 f . 1 5 . 1 . 5 x 1 2 Approximating distributions: Nannestad
Continuity correction Approximating distributions: Nannestad
Approximating distributions: Nannestad How? Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 10 Normal: mean = 10, VAR = 10 . 2 f . 1 5 . 1 . 5 x 5 1 1 5 2 Approximating distributions: Nannestad
Approximating distributions: Nannestad Drawing a normal curve with mean = variance = 9, and drawing the Poisson and normal distributions together allows comparison. Approximating distributions: Nannestad
Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 9 Normal: mean = 9, VAR = 9 0.2 f 0.15 0.1 0.05 x 5 10 15 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad For this value of = 9 the approximation of a normal curve (mean = variance = 9) is not close, so in this case we would use values from the Poisson table. Approximating distributions: Nannestad
Approximating distributions: Nannestad
Approximating distributions: Nannestad Why? When n is large and >20 the Poisson distribution is closely approximated by values from the normal distribution. This is a reason tables do not have values bigger than 20. Approximating distributions: Nannestad
Approximating distributions: Nannestad Consider how close the normal curve is to the Poisson values as increases. When n is large and >20 the Poisson distribution is closely approximated by the normal distribution. Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 5 Normal: mean = 5, VAR = 5 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 10 Normal: mean = 10, VAR = 10 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 15 Normal: mean = 15, VAR = 15 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 16 Normal: mean = 16, VAR = 16 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 17 Normal: mean = 17, VAR = 17 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 18 Normal: mean = 18, VAR = 18 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 19 Normal: mean = 19, VAR = 19 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 20 Normal: mean = 20, VAR = 20 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 21 Normal: mean = 21, VAR = 21 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 22 Normal: mean = 22, VAR = 22 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 23 Normal: mean = 23, VAR = 23 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 24 Normal: mean = 24, VAR = 24 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 25 Normal: mean = 25, VAR = 25 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 25 Normal: mean = 25, VAR = 25 0.1 f Change scale 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 30 Normal: mean = 30, VAR = 30 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 35 Normal: mean = 35, VAR = 35 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 40 Normal: mean = 40, VAR = 40 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 40 Normal: mean = 40, VAR = 40 0.1 f Change scale again 0.08 0.06 0.04 0.02 x 10 20 30 40 50 60 70 80 90 100 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 50 Normal: mean = 50, VAR = 50 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 60 70 80 90 100 Approximating distributions: Nannestad
Approximating distributions: Nannestad Poisson: = 75 Normal: mean = 75, VAR = 75 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 60 70 80 90 100 Approximating distributions: Nannestad
Approximating distributions: Nannestad Summary: when can we? Binomial distribution Normal distribution Poisson distribution np 5 and n(1-p) 5 p is too small for the tables n large > 20 Approximating distributions: Nannestad
Approximating distributions: Nannestad Summary: how do we? Binomial distribution Normal distribution = np Poisson distribution Approximating distributions: Nannestad
Approximating distributions: Nannestad The end. Approximating distributions: Nannestad