Functions and Their Inverses

Slides:



Advertisements
Similar presentations
5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships.
Advertisements

Rational Exponents and Radical Functions
Example 1A: Using the Horizontal-Line Test
Precalculus 1.7 INVERSE FUNCTIONS.
Functions and Their Inverses
Operations with Functions
EXAMPLE 1 Find an inverse relation Find an equation for the inverse of the relation y = 3x – 5. Write original relation. y = 3x – 5 Switch x and y. x =
INVERSE FUNCTIONS.  Prove that and are inverses of each other  Complete warm up individually and then compare to a neighbor END IN MIND.
Finding the Inverse. 1 st example, begin with your function f(x) = 3x – 7 replace f(x) with y y = 3x - 7 Interchange x and y to find the inverse x = 3y.
Objectives Write equivalent forms for exponential and logarithmic functions. Write, evaluate, and graph logarithmic functions.
Objectives Determine whether the inverse of a function is a function.
Functions and Their Inverses
Holt Algebra Logarithmic Functions Write equivalent forms for exponential and logarithmic functions. Write, evaluate, and graph logarithmic functions.
y = 1. x = 3y –7 2. x = y = 8x – 5 3. x = 4 – y y = 4 – x 4. x = y2
Math-3 Lesson 4-1 Inverse Functions. Definition A function is a set of ordered pairs with no two first elements alike. – f(x) = { (x,y) : (3, 2), (1,
Rational Exponents and Radical Functions
Combinations of Functions & Inverse Functions Obj: Be able to work with combinations/compositions of functions. Be able to find inverse functions. TS:
Holt McDougal Algebra Inverses of Relations and Functions 4-2 Inverses of Relations and Functions Holt Algebra 2 Warm Up Warm Up Lesson Presentation.
Goal: Find and use inverses of linear and nonlinear functions.
CHAPTER 6 SECTION 6 : FUNCTIONS AND THEIR INVERSES.
Functions and Their Inverses
Inverses of Relations and Functions
Lesson 1.6 Inverse Functions. Inverse Function, f -1 (x): Domain consists of the range of the original function Range consists of the domain of the original.
Holt McDougal Algebra Complex Numbers and Roots 2-5 Complex Numbers and Roots Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Do Now: Find f(g(x)) and g(f(x)). f(x) = x + 4, g(x) = x f(x) = x + 4, g(x) = x
Inverse Functions.
Warm Ups! Find f(g(x)) and g(f(x)) for each of the following: 1.F(x)= 2x +1, g(x) = (x-1)/2 2.F(x) = ½ x + 3, g(x) = 2x-6.
Finding Inverses (thru algebra) & Proving Inverses (thru composition) MM2A5b. Determine inverses of linear, quadratic, and power functions and functions.
EQ: What are the characteristics of functions and their inverses?
7.7 Operations with Functions 7.8 Inverse of Functions Algebra II w/ trig.
6.2 Inverse functions and Relations 1. 2 Recall that a relation is a set of ordered pairs. The inverse relation is the set of ordered pairs obtained by.
Ch 9 – Properties and Attributes of Functions 9.5 – Functions and their Inverses.
Do Now: Given f(x) = 2x + 8 and g(x) = 3x 2 – 1 find the following. 1.) (f + g)(x) 2.) g(x – 2)
5.3 Inverse Functions (Part I). Objectives Verify that one function is the inverse function of another function. Determine whether a function has an inverse.
Quiz f(x) = 2x + 3 and f(g(x)) = ? (f + g)(x) = ? 3. What is the domain? 3 f(x) - 2 g(x) = ? 4.
Operations with Functions
Warm Up Solve for x in terms of y
Ch. 1 – Functions and Their Graphs
Functions and Their Graphs RAFIZAH KECHIL, UiTM PULAU PINANG
Inverse Functions Algebra III, Sec. 1.9 Objective
INVERSE Functions and their GRAPHS
Inverse Functions 5.3 Chapter 5 Functions 5.3.1
Warm-up: Given f(x) = 2x3 + 5 and g(x) = x2 – 3 Find (f ° g)(x)
Inverse Functions.
Warm up f(x) = x g(x) = 4 - x (f о g)(x)= (g о f)(x)=
Use Inverse Functions Lesson 3.4
Math Ii Unit 2 (Part B).
One-to-one and Inverse Functions
Functions and Their Inverses
Functions and Their Inverses
Composition of Functions And Inverse Functions.
To find the inverse of a function
Section 1.8 INVERSE FUNCTIONS.
3 Inverse Functions.
Operations with Functions
Sec. 2.7 Inverse Functions.
One-to-one and Inverse Functions
One-to-one and Inverse Functions
To find the inverse of a function
Warm Up Determine the domain of the function.
3.6 - Inverse Functions Notation: Say: “f-inverse of x”…
Page 196 1) 3) 5) 7) 9) 11) 13) g(f(3)) = -25, f(g(1)) = 1, f(f(0)) = 4 15) 1 17) 30 19) f(g(x)) = (x + 3)2 g(f(x)) = x2 + 3 Domain: All Reals 21) 5/15/2019.
Determine if 2 Functions are Inverses by Compositions
Look at your quiz You have 10 minutes to work on your quiz again
Warm Up Determine the domain of f(g(x)). f(x) = g(x) =
Composite Function: Combining a function within another function.
Functions and Their Inverses
Functions and Their Inverses
4-2 Inverses of Relations and Functions Warm Up Lesson Presentation
Do Now: Given f(x) = 2x + 8 and g(x) = 3x2 – 1 find the following.
Presentation transcript:

Functions and Their Inverses Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 2 Holt Algebra2

Warm Up Solve for x in terms of y. 1. 2. 3. 4. y = 2ln x

Objectives Determine whether the inverse of a function is a function. Write rules for the inverses of functions.

Vocabulary one-to-one function

In Lesson 7-2, you learned that the inverse of a function f(x) “undoes” f(x). Its graph is a reflection across line y = x. The inverse may or not be a function. Recall that the vertical-line test (Lesson 1-6) can help you determine whether a relation is a function. Similarly, the horizontal-line test can help you determine whether the inverse of a function is a function.

Example 1A: Using the Horizontal-Line Test Use the horizontal-line test to determine whether the inverse of the blue relation is a function. The inverse is a function because no horizontal line passes through two points on the graph.

Example 1B: Using the Horizontal-Line Test Use the horizontal-line test to determine whether the inverse of the red relation is a function. The inverse is a not a function because a horizontal line passes through more than one point on the graph.

Check It Out! Example 1 Use the horizontal-line test to determine whether the inverse of each relation is a function. The inverse is a function because no horizontal line passes through two points on the graph.

Recall from Lesson 7-2 that to write the rule for the inverse of a function, you can exchange x and y and solve the equation for y. Because the value of x and y are switched, the domain of the function will be the range of its inverse and vice versa.

Example 2: Writing Rules for inverses Find the inverse of . Determine whether it is a function, and state its domain and range. Step 1 The horizontal-line test shows that the inverse is a function. Note that the domain and range of f are all real numbers.

Example 2 Continued Step 1 Find the inverse. Rewrite the function using y instead of f(x). Switch x and y in the equation. Cube both sides. Simplify. Isolate y.

Example 2 Continued Because the inverse is a function, . The domain of the inverse is the range of f(x):{x|x R}. The range is the domain of f(x):{y|y R}. Check Graph both relations to see that they are symmetric about y = x.

Check It Out! Example 2 Find the inverse of f(x) = x3 – 2. Determine whether it is a function, and state its domain and range. Step 1 The horizontal-line test shows that the inverse is a function. Note that the domain and range of f are all real numbers.

Check It Out! Example 2 Continued Step 1 Find the inverse. y = x3 – 2 Rewrite the function using y instead of f(x). x = y3 – 2 Switch x and y in the equation. x + 2 = y3 Add 2 to both sides of the equation. Take the cube root of both sides. 3 x + 2 = y 3 x + 2 = y Simplify.

Check It Out! Example 2 Continued Because the inverse is a function, . The domain of the inverse is the range of f(x): R. The range is the domain of f(x): R. Check Graph both relations to see that they are symmetric about y = x.

You have seen that the inverses of functions are not necessarily functions. When both a relation and its inverses are functions, the relation is called a one-to-one function. In a one-to-one function, each y-value is paired with exactly one x-value. You can use composition of functions to verify that two functions are inverses. Because inverse functions “undo” each other, when you compose two inverses the result is the input value x.

Example 3: Determining Whether Functions Are Inverses Determine by composition whether each pair of functions are inverses. 1 3 f(x) = 3x – 1 and g(x) = x + 1 Find the composition f(g(x)). Substitute x + 1 for x in f. 1 3 f(g(x)) = 3( x + 1) – 1 1 3 Use the Distributive Property. = (x + 3) – 1 = x + 2 Simplify.

Example 3 Continued Because f(g(x)) ≠ x, f and g are not inverses. There is no need to check g(f(x)). Check The graphs are not symmetric about the line y = x.

Example 3B: Determining Whether Functions Are Inverses For x ≠ 1 or 0, f(x) = and g(x) = + 1. 1 x x – 1 Find the compositions f(g(x)) and g(f (x)). = (x – 1) + 1 = x = x Because f(g(x)) = g(f (x)) = x for all x but 0 and 1, f and g are inverses.

Example 3B Continued Check The graphs are symmetric about the line y = x for all x but 0 and 1.

Determine by composition whether each pair of functions are inverses. Check It Out! Example 3a Determine by composition whether each pair of functions are inverses. 3 2 f(x) = x + 6 and g(x) = x – 9 Find the composition f(g(x)) and g(f(x)). f(g(x)) = ( x – 9) + 6 3 2 g(f(x)) = ( x + 6) – 9 2 3 = x – 6 + 6 = x + 9 – 9 = x = x Because f(g(x)) = g(f(x)) = x, they are inverses.

Check It Out! Example 3a Continued Check The graphs are symmetric about the line y = x for all x.

10 x - Check It Out! Example 3b f(x) = x2 + 5 and for x ≥ 0 Find the compositions f(g(x)) and g(f(x)). f(g(x)) = + 5 Substitute for x in f. = x + 25 +5 10 x - Simplify. = x – 10 x + 30

Check It Out! Example 3b Continued Because f(g(x)) ≠ x, f and g are not inverses. There is no need to check g(f(x)). Check The graphs are not symmetric about the line y = x.

Lesson Quiz: Part I 1. Use the horizontal-line test to determine whether the inverse of each relation is a function. A: yes; B: no

Lesson Quiz: Part II 2. Find the inverse f(x) = x2 – 4. Determine whether it is a function, and state its domain and range. not a function D: {x|x ≥ 4}; R: {all Real Numbers}

Lesson Quiz: Part III 3. Determine by composition whether f(x) = 3(x – 1)2 and g(x) = +1 are inverses for x ≥ 0. yes