Volume 86, Issue 5, Pages (September 1996)

Slides:



Advertisements
Similar presentations
Elena Conti, Nick P Franks, Peter Brick  Structure 
Advertisements

3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by.
Structure of the Rho Transcription Terminator
Volume 7, Issue 12, Pages (January 1999)
R.Ian Menz, John E. Walker, Andrew G.W. Leslie  Cell 
Volume 95, Issue 7, Pages (December 1998)
Structure of β2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action  Peter D Kwong, Neil Q McDonald, Paul B Sigler,
Volume 8, Issue 12, Pages (December 2000)
Volume 13, Issue 6, Pages (March 2004)
Volume 6, Issue 7, Pages (July 1998)
Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor HveA
Volume 3, Issue 1, Pages (January 1995)
Volume 87, Issue 2, Pages (October 1996)
The Crystal Structure of a Laminin G–like Module Reveals the Molecular Basis of α- Dystroglycan Binding to Laminins, Perlecan, and Agrin  Erhard Hohenester,
Kristopher Josephson, Naomi J. Logsdon, Mark R. Walter  Immunity 
Volume 11, Issue 2, Pages (February 2003)
The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism  Xiaoqiang Wang, Chi-sun Wang, Jordan Tang,
Volume 124, Issue 1, Pages (January 2006)
Identification of Phe187 as a Crucial Dimerization Determinant Facilitates Crystallization of a Monomeric Retroviral Integrase Core Domain  Meytal Galilee,
Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases  Yingwu Xu, Girija Bhargava, Hao Wu,
Structure of RGS4 Bound to AlF4−-Activated Giα1: Stabilization of the Transition State for GTP Hydrolysis  John J.G. Tesmer, David M. Berman, Alfred G.
Volume 3, Issue 4, Pages (April 1999)
Glycerol Dehydrogenase
A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism  Yorgo Modis,
David R Buckler, Yuchen Zhou, Ann M Stock  Structure 
Crystal Structure of the MHC Class I Homolog MIC-A, a γδ T Cell Ligand
Volume 100, Issue 6, Pages (March 2000)
Volume 4, Issue 5, Pages (November 1999)
Volume 84, Issue 2, Pages (February 2003)
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
Volume 133, Issue 1, Pages (April 2008)
Volume 12, Issue 11, Pages (November 2004)
The Monomeric dUTPase from Epstein-Barr Virus Mimics Trimeric dUTPases
Structure of the Tie2 RTK Domain
Daniel Peisach, Patricia Gee, Claudia Kent, Zhaohui Xu  Structure 
The 1.8 Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker  Matthew W Vetting, Douglas H Ohlendorf 
Volume 2, Issue 8, Pages (August 1994)
The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica  Jonas Uppenberg, Mogens Trier Hansen,
Crystal Structure of Carnitine Acetyltransferase and Implications for the Catalytic Mechanism and Fatty Acid Transport  Gerwald Jogl, Liang Tong  Cell 
Crystal structure of the ternary complex of 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea with NADPH and an active-site inhibitor  Arnold.
Crystal Structure of the DegS Stress Sensor
Crystallographic Analysis of the Recognition of a Nuclear Localization Signal by the Nuclear Import Factor Karyopherin α  Elena Conti, Marc Uy, Lore Leighton,
Structural Basis for Catalytic Activation of a Serine Recombinase
The basis for K-Ras4B binding specificity to protein farnesyl-transferase revealed by 2 Å resolution ternary complex structures  Stephen B Long, Patrick.
Volume 4, Issue 10, Pages (October 1996)
Masaru Goto, Rie Omi, Noriko Nakagawa, Ikuko Miyahara, Ken Hirotsu 
Three-dimensional structure of the human protective protein: structure of the precursor form suggests a complex activation mechanism  Gabby Rudenko, Erik.
Volume 3, Issue 3, Pages (March 1995)
Volume 85, Issue 5, Pages (May 1996)
Volume 5, Issue 10, Pages (October 1997)
The Crystal Structure of an Unusual Processivity Factor, Herpes Simplex Virus UL42, Bound to the C Terminus of Its Cognate Polymerase  Harmon J Zuccola,
Volume 97, Issue 3, Pages (April 1999)
Volume 87, Issue 7, Pages (December 1996)
Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP+ molecule and provides insights into enzyme deficiency  Shannon.
Volume 8, Issue 5, Pages (May 2000)
Volume 13, Issue 5, Pages (May 2005)
Pingwei Li, Gerry McDermott, Roland K. Strong  Immunity 
Luc Bousset, Hassan Belrhali, Joël Janin, Ronald Melki, Solange Morera 
The Crystal Structure of a Laminin G–like Module Reveals the Molecular Basis of α- Dystroglycan Binding to Laminins, Perlecan, and Agrin  Erhard Hohenester,
Kristopher Josephson, Naomi J. Logsdon, Mark R. Walter  Immunity 
Corin: a serine protease
Structure of E. coli 5′-methylthioadenosine/S-adenosylhomocysteine Nucleosidase Reveals Similarity to the Purine Nucleoside Phosphorylases  Jeffrey E.
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
The Crystal Structure of an Unusual Processivity Factor, Herpes Simplex Virus UL42, Bound to the C Terminus of Its Cognate Polymerase  Harmon J Zuccola,
The 1.4 Å Crystal Structure of Kumamolysin
Volume 13, Issue 4, Pages (April 2005)
Volume 13, Issue 6, Pages (March 2004)
Morgan Huse, Ye-Guang Chen, Joan Massagué, John Kuriyan  Cell 
Luhua Lai, Hisao Yokota, Li-Wei Hung, Rosalind Kim, Sung-Hou Kim 
Volume 8, Issue 8, Pages (August 2000)
Presentation transcript:

Volume 86, Issue 5, Pages 835-843 (September 1996) Structure of the Human Cytomegalovirus Protease Catalytic Domain Reveals a Novel Serine Protease Fold and Catalytic Triad  Ping Chen, Hideaki Tsuge, Robert J. Almassy, Cindy L. Gribskov, Susumu Katoh, Darin L. Vanderpool, Stephen A. Margosiak, Christopher Pinko, David A. Matthews, Chen-Chen Kan  Cell  Volume 86, Issue 5, Pages 835-843 (September 1996) DOI: 10.1016/S0092-8674(00)80157-9

Figure 1 View of the HCMV Protease Catalytic Domain Oriented to Highlight the Core β Sheets Strands are shown in yellow, α-helices in blue, and connecting loops in purple. Cell 1996 86, 835-843DOI: (10.1016/S0092-8674(00)80157-9)

Figure 2 Secondary Structure Assignments for the HCMV Protease Catalytic Domain and Sequence Alignments for Catalytic Domains of Representative Herpesvirus Proteases α-helices and β strands are marked as α1–α8 and β1–β8, respectively. HSV-1, herpes simplex-1; HCMV, human cytomegalovirus strain AD169; MCMV, mouse CMV; ColCMV, simian CMV strain Colburn; EBV, Epstein Barr virus. Cell 1996 86, 835-843DOI: (10.1016/S0092-8674(00)80157-9)

Figure 3 HCMV Protease Catalytic Domain Dimer, Viewed Down the 2-Fold Axis α-helices are shown in blue, and the two central β sheets are shown in yellow. Cell 1996 86, 835-843DOI: (10.1016/S0092-8674(00)80157-9)

Figure 4 Stereo View of the HCMV Protease Active Site and Surrounding Residues The catalytic triad, Arg-165, and Arg-166 are represented with thick bonds. Drawn as spheres with stick bonds is a model peptide showing how the P2 to P1' (Asn-Ala-Ser) portion of a substrate could be positioned within the active-site cleft. A larger sphere marks the iodine position in an iodotyrosine-containing tetrapeptide aldehyde inhibitor bound to the HCMV protease (see text). Cell 1996 86, 835-843DOI: (10.1016/S0092-8674(00)80157-9)

Figure 5 View of Superposed Catalytic Triads and Oxyanion Binding Sites for HCMV Protease (Yellow), Trypsin (Green), and Subtilisin (Pink) Cell 1996 86, 835-843DOI: (10.1016/S0092-8674(00)80157-9)

Figure 6 View of the HCMV Protease Dimer Interface Showing Helix α7 from One Protomer and the Molecular Surface of the Other Protomer Helix α7 sits in a groove formed by five helices from the second subunit, one of which is α7′ (primed secondary structure elements refer to those in the second subunit). The surface of α7′ is directly to the left of α7. Cell 1996 86, 835-843DOI: (10.1016/S0092-8674(00)80157-9)

Figure 7 A Portion of the Averaged Solvent-Flattened ISAS Electron Density Map Calculated at 2.9 Å Resolution and Contoured at 2.5 σ Superposed on the density is the final refined model. Cell 1996 86, 835-843DOI: (10.1016/S0092-8674(00)80157-9)