Factoring Quadratics using X-Box method
X- Box Product a∙c factors factors Sum b
X-box Factoring This is a guaranteed method for factoring quadratic trinomials—no guessing necessary! We will learn how to factor quadratic equations using the x-box method Background knowledge needed: Basic x-solve problems General form of a quadratic equation
Solve the x-box way Example: Factor 3x2 -13x -10 x -5 (3)(-10)= -30 3x -15 2 -13 +2 2x -10 3x2 -13x -10 (x-5)(3x+2)
First and Last Coefficients FACTOR the x-box way ax2 + bx + c GCF GCF Product ac=mn First and Last Coefficients 1st Term Factor n GCF n m Middle Last term Factor m b=m+n Sum GCF
Examples Factor using the x-box method. 1. x2 + 4x – 12 x +6 x -12 4 x 6x 6 -2 -2 -2x -12 Solution: x2 + 4x – 12 (x + 6)(x - 2)
Examples 2. x2 - 9x + 20 x -4 x Solution: x2 - 9x + 20 (x - 4)(x - 5) -4 -5 20 -9 x x² -4x -5 -5x 20 Solution: x2 - 9x + 20 (x - 4)(x - 5)
Examples 3. 2x2 - 5x – 7 2x -7 x Solution: 2x2 - 5x – 7 -14 -5 -7 2 x -7x 2x² +1 2x -7 Solution: 2x2 - 5x – 7 (2x - 7)(x + 1)
Examples 4. 15x2 + 7x – 2 3x +2 5x Solution: 15x2 + 7x – 2 -30 7 5x 15x² 10x 10 -3 -1 -3x -2 Solution: 15x2 + 7x – 2 (3x + 2)(5x - 1)
You Try 3x2 - 13x – 10 6x2 + x – 2 4x2 + 9x + 2