Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 

Slides:



Advertisements
Similar presentations
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Advertisements

Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
Optical imaging of mouse articular cartilage using the glycosaminoglycans binding property of fluorescent-labeled octaarginine  K. Inagawa, T. Oohashi,
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
PQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage – associations to matrix composition.
Granulocyte macrophage – colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture  M.-D. Truong,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs  M.J. Farrell, J.I. Shin, L.J.
Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants  R.J.H. Custers, W.J.A. Dhert, D.B.F. Saris,
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
M. M. Temple, Ph. D. , W. C. Bae, Ph. D. , M. Q. Chen, M. S. , M
Osteoarthritis and Cartilage
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Contrast Enhanced Computed Tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage  P.N. Bansal, N.S.
C. Pauli, S. P. Grogan, S. Patil, S. Otsuki, A. Hasegawa, J. Koziol, M
Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral.
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
S. Kauppinen, S. S. Karhula, J. Thevenot, T. Ylitalo, L. Rieppo, I
R. Mahmoodian, J. Leasure, P. Philip, N. Pleshko, F. Capaldi, S
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
Correlation of non-destructive electromechanical probe (Arthro-BST) assessment with histological scores and mechanical properties in human tibial plateau 
Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro  E. Tognana, Ph.D., F. Chen, M.D., R.F. Padera,
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
The differences on extracellular matrix among each portion of meniscus
The chondrogenic repair response of undifferentiated mesenchymal cells in rat full- thickness articular cartilage defects  Y. Anraku, M.D., H. Mizuta,
Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC  J.J. Stubendorff, E. Lammentausta,
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
An experimental study on costal osteochondral graft
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development  A.R.
Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins  M. Shimaya, T. Muneta, S. Ichinose, K. Tsuji,
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling  S. Kudo, H. Mizuta,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
Estimation of articular cartilage properties using multivariate analysis of optical coherence tomography signal  P.H. Puhakka, N.C.R. te Moller, I.O.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical.
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress  Shuitsu Maeda, M.D., Jun Nishida,
Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile  A. Asanbaeva, Ph.D.,
Tissue engineering with meniscus cells derived from surgical debris
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
In vitro method for 3D morphometry of human articular cartilage chondrons based on micro-computed tomography  I. Kestilä, J. Thevenot, M.A. Finnilä, S.S.
Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition  M. Son, S.B. Goodman,
A.R. Tan, E.Y. Dong, G.A. Ateshian, C.T. Hung 
C. Pascual Garrido, A. A. Hakimiyan, L. Rappoport, T. R. Oegema, M. A
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
H. Stenhamre, M. Sc. , K. Slynarski, M. D. , Ph. D. , C. Petrén, T
Osteoarthritis year in review 2016: mechanics
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
Presentation transcript:

Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties  S. Sim, A. Chevrier, M. Garon, E. Quenneville, A. Yaroshinsky, C.D. Hoemann, M.D. Buschmann  Osteoarthritis and Cartilage  Volume 22, Issue 11, Pages 1926-1935 (November 2014) DOI: 10.1016/j.joca.2014.08.008 Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Trimming and fixation of the distal femur and central/posterior condyles onto the sample holder and cored sample with the position grid superimposed. (A) Distal femur cut horizontally with the band saw; (B) Fixation of the femur onto the cylindrical platform by screws positioned to remain at least 1 cm from the articular surface; (C) Central/posterior condyles cut with the band saw at the correct orientation; (D) Fixation of the central/posterior condyles onto the cylindrical platform by screws positioned to remain at least 1 cm from the articular surface; (E) Top view of the trochlea, anterior and central condyles cored; (F) Top view of the central/posterior condyles cored. Osteoarthritis and Cartilage 2014 22, 1926-1935DOI: (10.1016/j.joca.2014.08.008) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 (A) Arthro-BST device with the testing chamber and the camera-positioning software; (B) Arthro-BST manually compressing the cartilage surface; (C) Photograph of an osteochondral core used for cartilage thickness measurement; (D) Photograph of the osteochondral core maintained in the sample holder during mechanical characterization; (E) Mechanical tester equipped with manual angular and horizontal positioner. Osteoarthritis and Cartilage 2014 22, 1926-1935DOI: (10.1016/j.joca.2014.08.008) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 (A, B, C) Representative Safranin O/Fast Green stained sections for three groups of the Mankin score and the corresponding electromechanical QP (mean ± SD, N = 110 cores); (D, E) Representative PLM slides for two groupings of the PLM score and the corresponding QP (mean ± SD, N = 68 cores). Bars = 1 mm. Osteoarthritis and Cartilage 2014 22, 1926-1935DOI: (10.1016/j.joca.2014.08.008) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 (A) Positive correlation between electromechanical QP and water content; (B) Negative correlation between electromechanical QP and GAG content (chondroitin sulfate per wet weight); (C) No correlation between electromechanical QP and collagen per dry weight; (D) No correlation between electromechanical QP and number of cells per wet weight. Osteoarthritis and Cartilage 2014 22, 1926-1935DOI: (10.1016/j.joca.2014.08.008) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 (A) Negative correlation between electromechanical QP and fibril modulus Ef; (B) Negative correlation between electromechanical QP and matrix modulus Em; (C) Positive correlation between electromechanical QP and permeability logk; (D) No correlation between the electromechanical QP and cartilage thickness obtained with a calibrated dissection microscope. Osteoarthritis and Cartilage 2014 22, 1926-1935DOI: (10.1016/j.joca.2014.08.008) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 The electromechanical QP (logarithmic scale) correspondence with the 3 parameters showing the highest statistical correlations, i.e., Mankin score, Fibril Modulus Ef and GAG content per wet weight based on multiple regression analysis. The solid portions of the blue, red, and green lines correspond to the measured QP in this study, i.e., from 6 to 22. The electromechanical QP increases from 7 to ∼11 indicating slight cartilage degeneration corresponding to: (1) Mankin scores increasing from 0 to 2, (2) Fibril modulus Ef decreasing from >20 to ∼10 MPa and, (3) GAG content decreasing from 68 to ∼28 μg/mg. Further increase of QP from 11 to 15 corresponds to: (1) Mankin scores increasing from 2 to 5, (2) Fibril modulus Ef decreasing from 10 to ∼10−1 MPa and, (3) GAG content decreasing from 28 to ∼5 μg/mg. QP values above 15 correspond to yet more advanced cartilage degeneration on histological, biomechanical and biochemical scales. Osteoarthritis and Cartilage 2014 22, 1926-1935DOI: (10.1016/j.joca.2014.08.008) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions