Newton’s Divided Difference Polynomial Method of Interpolation

Slides:



Advertisements
Similar presentations
5/1/ Finite Difference Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Advertisements

Newton’s Divided Difference Polynomial Method of Interpolation
1 Direct Method of Interpolation Electrical Engineering Majors Authors: Autar Kaw, Jai Paul
5/19/ Runge 4 th Order Method Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
7/2/ Differentiation-Discrete Functions Industrial Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
7/2/ Backward Divided Difference Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati
8/8/ Euler Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
8/15/ Differentiation-Discrete Functions Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
8/15/ Binary Representation Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
1 Spline Interpolation Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
9/22/ Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
10/8/ Propagation of Errors Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
1 Lagrangian Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Chemical Engineering Majors Authors: Autar Kaw, Jai.
1 Newton’s Divided Difference Polynomial Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw,
5/30/ Runge 4 th Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/16/ Euler Method Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/17/ Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Lagrangian Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1/16/ Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1/19/ Runge 4 th Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Direct Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
2/2/ Secant Method Electrical Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
2/28/ Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw,
1 Spline Interpolation Method Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
Trapezoidal Rule of Integration
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Spline Interpolation Method
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Spline Interpolation Method
Direct Method of Interpolation
Spline Interpolation Method
Lagrangian Interpolation
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Trapezoidal Rule of Integration
Trapezoidal Rule of Integration
Spline Interpolation Method
Lagrangian Interpolation
Lagrangian Interpolation
Binary Representation
Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
Binary Representation
Binary Representation
Lagrangian Interpolation
Lagrangian Interpolation
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Reading Between the Lines
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Lagrangian Interpolation
Presentation transcript:

Newton’s Divided Difference Polynomial Method of Interpolation Electrical Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates http://numericalmethods.eng.usf.edu

Newton’s Divided Difference Method of Interpolation http://numericalmethods.eng.usf.edu

What is Interpolation ? Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given. http://numericalmethods.eng.usf.edu

Interpolants Evaluate Differentiate, and Integrate. Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate. http://numericalmethods.eng.usf.edu

Newton’s Divided Difference Method Linear interpolation: Given pass a linear interpolant through the data where http://numericalmethods.eng.usf.edu

Example Thermistors are based on materials’ change in resistance with temperature. A manufacturer of thermistors makes the following observations on a thermistor. Determine the temperature corresponding to 754.8 ohms using the Newton Divided Difference method for linear interpolation. R (Ω) T(°C) 1101.0 911.3 636.0 451.1 25.113 30.131 40.120 50.128 http://numericalmethods.eng.usf.edu

Linear Interpolation http://numericalmethods.eng.usf.edu

Linear Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Interpolation http://numericalmethods.eng.usf.edu

Example Thermistors are based on materials’ change in resistance with temperature. A manufacturer of thermistors makes the following observations on a thermistor. Determine the temperature corresponding to 754.8 ohms using the Newton Divided Difference method for quadratic interpolation. R (Ω) T(°C) 1101.0 911.3 636.0 451.1 25.113 30.131 40.120 50.128 http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

General Form where Rewriting http://numericalmethods.eng.usf.edu

General Form http://numericalmethods.eng.usf.edu

General form http://numericalmethods.eng.usf.edu

Example Thermistors are based on materials’ change in resistance with temperature. A manufacturer of thermistors makes the following observations on a thermistor. Determine the temperature corresponding to 754.8 ohms using the Newton Divided Difference method for cubic interpolation. R (Ω) T(°C) 1101.0 911.3 636.0 451.1 25.113 30.131 40.120 50.128 http://numericalmethods.eng.usf.edu

Example http://numericalmethods.eng.usf.edu

Example http://numericalmethods.eng.usf.edu

Example http://numericalmethods.eng.usf.edu

Comparison Table http://numericalmethods.eng.usf.edu

Actual Calibration R (Ω) T (°C) x(ln R) y(1/T) 1101.0 911.3 636.0 451.1 25.113 30.131 40.120 50.128 7.0040 6.8149 6.4552 6.1117 0.039820 0.033188 0.024925 0.019949 http://numericalmethods.eng.usf.edu

Actual Calibration http://numericalmethods.eng.usf.edu

Actual Calibration http://numericalmethods.eng.usf.edu

Actual Calibration http://numericalmethods.eng.usf.edu

Actual Calibration http://numericalmethods.eng.usf.edu

Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/newton_divided_difference_method.html

THE END http://numericalmethods.eng.usf.edu