6pp 3S- vs l / J´ Updated: One color, H+ detection: pages

Slides:



Advertisements
Similar presentations
HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.
Advertisements

I 2 fs REMPI 1) Energetics / excitation calculations....slide 2 2) Absorption spectrum slides 3-6 3)REMPI spectrum slide.
HCl,  =0, H 3 7Cl and H35Cl analysis. agust,www,.....Sept10/PPT aak.ppt agust,heima,...Sept10/XLS ak.xls agust,heima,...Sept10/Look for J ak.pxp.
Comparison of E(1), V(m+8), H(0) and V(m+7) VMI data: 1 color exp: KER spectra, 1color exp.……………………..…………..2-5 Beta2 vs J´,1 color exp.…………………………………….6-10.
Molecular Bonds Molecular Spectra Molecules and Solids CHAPTER 10 Molecules and Solids Johannes Diderik van der Waals (1837 – 1923) “You little molecule!”
Applications of photoelectron velocity map imaging at high resolution or Photoionization dynamics of NH 3 (B 1 E  ) Katharine L. Reid (Paul Hockett, Mick.
METO 621 LESSON 7. Vibrating Rotator If there were no interaction between the rotation and vibration, then the total energy of a quantum state would be.
CH2Br2: 1) Absorption 2) REMPI scans: overview (slides 12-15) 3) C+ REMPI vs absorption spectrum agust,www,....ch2br2/PPT ak.ppt agust,heima,...CH2Br2/PXP ak.pxp.
1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT ak.ppt agust,heima,....Jan11/XLS ak.xls.
Pnt I rel AK: ; agust,heima/rannsóknir/REMPI/HF/fra Wang/HF test skimmer pxp & HF t skimmer ppt Fig. 1.
HBr, F1D2, v´=1
II. Multi- photon excitation / ionization processes
HBr, F 1  2, v´=1
Physics for Scientists and Engineers, 6e Chapter 43 - Molecules and Solids.
HBr: F 1  2 (v´=1) V(v´=m+7) interaction: W 12 determination from line shifts: agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state jlak.xls.
HCl agust,heima,...Sept10/aHCl(3+1)j3S(0)Calc ak.pxp (JMS paper) agust,www,....Sept10/PPT ak.ppt agust,heima,...Sept10/HCl(3+1)j3Sigma(0) Calc ak.pxp.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
HCl H+ signal near agust,heima,...januar09/V8_f3d2(alignment) vhw.pxp.
Things to address in our CH 3 Br studies / publication(s) Main reference is T. Ridley et al., JPC A, 112, 7170, (2008):
CH 2 Br 2 agust,www,...rempi/ch2br2/PPT ak.ppt agust,heima,....CH2Br2/Long, Sept-11/Merged CH2Br2 spectra jl ak.pxp.
CF3Br agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp.
H35Cl, j(0+) intensity ratio analysis and comparison of experimental data agust,www,....Jan11/PPT ak.ppt agust,heima,...Jan11/Evaluation of coupling.
HBr, (updated ; slide 12) V(m+i) /HBr+(v+) spectra analysis
Vibrational and Rotational Spectroscopy
Revisit vibrational Spectroscopy
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
The Electronic Spectra of Coordination Compounds.
HI Relevant to the HI- Perturb.II paper:pages: H(2) ion intensities (system (b))………………………2-9
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
PUMP-PROBE MEASUREMENTS OF ROTATIONAL ENERGY TRANSFER RATES IN HBr + HBr COLLISIONS M. H. Kabir, I. O. Antonov, and M. C. Heaven Emory University Department.
ROTATIONAL SPECTROSCOPY
Ionization Energy Measurements and Spectroscopy of HfO and HfO+
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
Eirík´s project(?) CH3I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
HBr, E(0), KERs and relative intensities revisited: Content:pages: KER spectra and „channel.
1 Introduction to Atomic Spectroscopy Lecture 10.
PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,
TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG,
HCl, E(v´=2) agust,www,…..hcl/June11/PPT ak.ppt agust,heima,…HCl/June11/HCl E2 spectra jl.pxp agust,heima,…HCl/June11/HCl E2 spectra jlaka.pxp.
Current team Mikhail Ryazanov Dr. Chirantha Rodrigo Overtone-induced dissociation and isomerization of the hydroxymethyl (CH 2 OH) radical First team:
VMI images –fitting Helgi Rafn Hróðmarsson. The purpose of this fitting procedure is to check whether the assumption that the angular distribution data.
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
HBr Energetics agust,www,....hbr/PPT ak.ppt agust, heima,...HBr/XLS ak.xls.
HBr, angular distribution analysis E(0) Updated,
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
Electromagnetic Radiation, Cont….
CH3I VMI-REMPI data and analysis:
Degenerate Semiconductors
HBr, Angular distributions for V(m+i), i = 4-10; J´
The lowest vibrational states of urea from the rotational spectrum
Updated (p:15-16, refs. & p:50-51)
DCl (HCl) Heavy Rydberg states work Exploring V state spectra
H(0), one-color, VMI and slicing images
HBr, 3S-, J´= 8 & V(m+9) Updated:
2 color VMI exp. CH3(X;v1v2v3v4) detection; hi
VMI-fitting results for V(m+i), i=4-10
HBr Mass resolved REMPI and Imaging REMPI.
m1 VIBRATIONAL THEORY p.55 bonds ~ springs E = ½ kx2 m2 x is + or -
HBr 6pp.. vs. V(m+17) state interactions.
CH3I VMI-REMPI data and analysis:
1hv spectrum corrected/shifted
HI Absorption REMPI references (slide 9) Energetics (slides 10-)
CH3Br Negative particle detections; Electrons /PES:
HBr The cm-1 system (slides 2-16)
KER predictions for Br+ images
CF3Br agust,www,....cf3br/PPT ak.ppt agust,heima,....Sept10/XLS ak.xls
Perturbation analysis in REMPI Spectra of HCl and HBr
Presentation transcript:

6pp 3S- vs l / J´ Updated: 17.2.2016 One color, H+ detection: pages KER spectra, J´= 8 and 0-1 from autumn 2013………………… 2 KER spectra, J´=8, (1:1 mix): 3 sets(exp. 141010).…………... 3-4 KER spectra, J´=8 vs. Mix (exp. 141013)………………………….. 5 Selected „best“ KER spectrum, J´=8…………………………………. 6 KER spectra vs. Lamda………………………………………………………. 7-10 Comparison of wavelength scans and J´s …………………………. 11-15 REMPI spectra…………………………………………………………………. 16-18 I(H*+Br*)/I(H*+Br) vs. l (J´) and 2hn…………………………… 19-22 Shifts of the l(exp.) scale (by about 10.5 cm-1)……………… 23-26 the intensity ratios with respect to total KER intensity…….. 27-31 the „H*(n=3) + Br“ prediction vs the lowest KER peak……… 32-34 Angular distribution analysis…………………………………………….. 35-48 Prediction calculations for KER spectra……………………………… 49-62 Search for v+(max) for HBr+ and HBr+*………………………………. 63-66 Precision of the shift procedure………………………………………… 66-68 Near-degenerate interaction 6pp <-> V(m+17)…………………. 69 KERs vs REMPI spectra, summary (figure+ text…………………. 70-71 Relative intensities of channels signals……………………………… 72-74 Angular distribution (b2) summary (fig. + text)… ………………. 75-76 VMI vs. KER for J´ ca. 8,7,6,5,4,2………..…………………………….. 77-82 Beta4 vs. J´ ………………………………………………………………………… 83 Excitations via J´= 0 and 8 in 6ppi from J´= J´………………………. 84 Updated: 17.2.2016

HBr +(1/2) peaks 3S-, J´= 8; 0-1(?) H+ + Br(1/2) HBr +(3/2) peaks From autumn 2013 100% HBr 50:50 = HBr:He H+ + Br(3/2) KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-140112.pxp; Lay:0,Gr:0

6pp 3S-, J´= 8; exp: 141010 50%:50% HBr:He mix Set3 Set2 Set1 pix …PXP-141010,pxp; Lay:0; Gr:4;

6pp 3S-, J´= 8; exp: 141010 50%:50% HBr:He mix Set3 Set2 Set1 pix …PXP-141010,pxp; Lay:0; Gr:4;

6pp 3S-, J´= 8; exp: 141013 Set3: 1:1 = HBr:He Set2: 1:0= HBr:He Identical spectra pix …PXP-141010,pxp; Lay:1; Gr:5;

6pp 3S-, J´= 8; exp: 141013 Use 50%:50% spectrum from 141010 , which shows best resolution in the HBr+/HBr+* (v+) peak reagion for some reason. Let´s perform -prediction calculations. -angular distrib. analysis

6pp 3S-, J´= 8; exp: 141013 Landa= 235.952 235.900 235.863 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010.pxp ; Lay:2; Gr:6;

6pp 3S-vs l( J´); exp: 141014 Landa/nm= 235.952 235.950 235.945 235.940 235.935 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010.pxp ; Lay:5; Gr:11;

6pp 3S-vs l( J´); exp: 141014 Landa/nm= KER/eV Could be due to H*(n=3) + Br See: https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131209.pptx Landa/nm= 235.952 235.950 235.945 235.940 235.935 235.930 235.925 235.920 235.915 235.910 235.905 235.900 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010.pxp ; Lay:5; Gr:11;

6pp 3S-vs l( J´); exp: 141014 & 141015 Landa/nm= KER/eV 235.900 235.895 235.890 235.885 235.880 235.875 235.870 235.865 235.860 235.855 235.850 235.845 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010.pxp ; Lay:6; Gr:12;

6pp 3S-vs l( J´); exp: 141014 Exp. Scans Shifted by 7 down Landa/nm= J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. Scans Shifted by 7 down Landa/nm= 235.952 235.950 235.945 235.940 235.935 235.930 235.925 235.920 235.915 235.910 235.905 235.900 cm-1 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010.pxp ; Lay:5; Gr:11; ATH https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010a.pxp ;Lay6, Gr:12

6pp 3S-vs l( J´); exp: 141014 Exp. Scans Shifted by 7 Landa/nm= down J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. Scans Shifted by 7 down H*+ Br* Landa/nm= 235.952 235.950 235.945 235.940 235.935 235.930 235.925 235.920 235.915 235.910 235.905 235.900 H*+ Br KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:5; Gr:11; https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010a.pxp ;Lay6, Gr:12

6pp 3S-vs l( J´); exp: 141014 & 141015 Exp. Scans Shifted by 7 J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. Scans Shifted by 7 down Landa/nm= 235.900 235.895 235.890 235.885 235.880 235.875 235.870 235.865 235.860 235.855 235.850 235.845 cm-1 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010.pxp ; Lay:6; Gr:12; ATH https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010a.pxp ;Lay6, Gr:12

6pp 3S-vs l( J´); exp: 141014 & 141015 Exp. Scans (0.005 nm steps) J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. Scans (0.005 nm steps) Shifted by 7 down Landa/nm= 235.900 235.895 235.890 235.885 235.880 235.875 235.870 235.865 235.860 235.855 235.850 235.845 cm-1 H*+ Br* H*+ Br KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:6; Gr:12; https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010a.pxp ;Lay6, Gr:12

6pp 3S-vs l( J´) Comments: In slides 11-14 I have shifted the laser wavelengths by 7 cm-1 down in energy on the two-wavenumber scale which I feel that is realistic based on the noice level of the highest energy KER spectra (ca. 235.850 nm) which suggest that the edge of the Q line serie for the 6pp 3S- system is close to 235.850-235.855 nm It is noteworthy that the 235.920- 235.935 nm spectra, where large structural alterations are seen in the KER spectra, are indeed in the J´= 7 – 8 region where near-resonance is found to occur. The ratio I(H*+Br*)/I(H*+Br)increases as l / J´ increases

Rotational peak positions Perturbation region Exp. Scans in steps of 0.005 nm (shifted up by 7 cm-1) Rotational peak positions J´= 9 8 7 6 5 4 3 2 10 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010.pxp ; Lay:4; Gr:7;

The lower energy region (spectrum from Long, 141013): 6pp 3S-, …etc.; closer look at mass resolved REMPI spectra in the 6pp 3S- region and The lower energy region (spectrum from Long, 141013): ? 2hv/ cm-1 …6ppi 3sigma.pxp; Lay:0; Gr:0; eða: https://notendur.hi.is/~agust/rannsoknir/Crete/6pi sigma.pxp

The lower energy region (spectrum from Long, 141013): 6pp 3S-, …etc.; closer look at mass resolved REMPI spectra in the 6pp 3S- region and The lower energy region (spectrum from Long, 141013): Br ->->Br** (2+1)REMPI atomic line ? ? The HBr+ spectrum seems to be shifted a bit relative to the others …6ppi 3sigma.pxp; Lay:0; Gr:0; eða: https://notendur.hi.is/~agust/rannsoknir/Crete/6pi sigma.pxp

6pp 3S-vs l( J´); exp: 141014 Landa/ nm= KER/eV H*+ H*+ Br Br* 235.952 235.950 235.945 235.940 235.935 235.930 235.925 235.920 235.915 235.910 235.905 235.900 H*+ Br* H*+ Br KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:5; Gr:11;

6pp 3S-vs l( J´); exp: 141014 & 141015 Landa/nm= KER/eV H*+ H*+ Br Br* 235.900 235.895 235.890 235.885 235.880 235.875 235.870 235.865 235.860 235.855 235.850 235.845 H*+ Br* KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:6; Gr:12;

6pp 3S-vs l( J´); exp: 141014 & 141015 I(H*+Br*)/ I(H*+Br) l(exp)/nm https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:7; Gr:13; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141010.xlsx

6pp 3S-vs l( J´); exp: 141014 & 141015 2hn(exp.)/cm-1 I(H*+Br*)/ https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:8; Gr:14; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141010.xlsx

Exp. scans cm-1 Landa/ nm= Comments: Careful look at the KER´s for the higher wavelength excitations (see slide 12) reveals that the noice levels for the 235.952, 235.950 and 235.930 and 235.925 nm spectra are larger than those for the 235.945 – 235.935 nm spectra. This suggest that the 235.945 – 235.935 nm spectra correspind to the J´= 7 – 8 peaks whereas the 235.952, 235.950 and 235.930 and 235.925 nm spectra correspond to the big gaps between the J‘ = 8-9 and 6-7 peaks: ERGO lets shift the exp wavelengths a bit further down. J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. scans cm-1 Landa/ nm= 235.952 235.950 235.945 235.940 235.935 235.930 235.925 235.920 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010c.pxp ; Lay:5; Gr:11

6pp 3S-vs l( J´); exp: 141014 Exp. Scans Shifted by 10.5 cm-1 down J´=J‘‘= Rot. lines 9 8 7 6 5 4 3 2 1 Exp. Scans Shifted by 10.5 cm-1 down H*+ Br* l/Lamda Exp. /nm= 235.952 235.950 235.945 235.940 235.935 235.930 235.925 235.920 235.915 235.910 235.905 235.900 The near- resonance interaction region H*+ Br The near- resonance interaction region KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:5; Gr:11; https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010a.pxp ;Lay6, Gr:12

Spectrum“ is close to the Band head / edge of the Q line series. 6pp 3S-vs l( J´); exp: 141014 & 141015 J´=J‘‘= Rot. lines 9 8 7 6 5 4 3 2 1 ERGO: the „235.860 nm“ Spectrum“ is close to the Band head / edge of the Q line series. Exp. Scans (0.005 nm steps) Shifted by 10.5 cm-1 down cm-1 H*+ Br* H*+ Br Lamda/nm= 235.900 235.895 235.890 235.885 235.880 235.875 235.870 235.865 235.860 235.855 235.850 235.845 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:6; Gr:12; https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010a.pxp ;Lay6, Gr:12

6pp 3S-vs l( J´); exp: 141014 & 141015 235.950 nm 235.855 nm I(H*+Br*)/ I(H*+Br) 235.950 nm 235.855 nm Rotational lines J´=J´´= 9 8 7 6 5 4 2 1 0 2hn/ (shifted up by 10.5 cm-1) cm-1 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:8; Gr:14; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141010.xlsx

Now let´s look at, -the intensity ratios with respect to total KER intensity. x

6pp 3S-vs l( J´); exp: 141014 l/ nm= KER/eV H*+ Br* H*+ Br 235.952 235.950 235.945 235.940 235.935 235.930 235.925 235.920 235.915 235.910 235.905 235.900 H*+ Br* H*+ Br KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:5; Gr:11;

6pp 3S-vs l( J´); exp: 141014 & 141015 Landa/ nm= I(total): KER/eV 235.900 235.895 235.890 235.885 235.880 235.875 235.870 235.865 235.860 235.855 235.850 235.845 I(total): KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:6; Gr:12;

6pp 3S-vs l( J´); exp: 141014 & 141015 Intensity ratios 235.950 nm I(H*+Br*)/ I(total) 235.950 nm Rotational lines 235.855 nm J´=J´´= 9 8 7 6 5 4 3 2 1 0 I(H*+Br)/ I(total) 2hn/ (shifted up by 10.5 cm-1) cm-1 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:9; Gr:15; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141010.xlsx

6pp 3S-vs l( J´); exp: 141014 & 141015 Intensity ratios Rotational I(HBr+/HBr+*)/ I(total) estimated Rotational lines J´=J´´= 9 8 7 6 5 4 3 2 1 0 2hn/ (shifted up by 10.5 cm-1) cm-1 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010b.pxp ; Lay:10; Gr:17; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141010.xlsx

Now let´s look at, -the „H*(n=3) + Br“ prediction vs the lowest KER peak

6pp 3S-vs l( J´); exp: 141014 & 141015 10.5 cm-1 KER/eV l(exp)/ 2hv corr. 3hv corr. 3hv corr + nm= (shifted) (shifted) E(J´=7): 10.5 cm-1 235.952 235.950 84774,22113 127161,3 127627,8 235.945 84776,01739 127164 127630,5 235.940 84777,81372 127166,7 127633,2 235.935 84779,61014 127169,4 127635,9 235.930 84781,40662 127172,1 127638,6 235.925 84783,20319 127174,8 127641,3 235.920 84784,99983 127177,5 127644 235.915 235.910 235.905 235.900 KER/eV These values can be compared with the energy threshold for H*(n=3) + Br formation = 127438 cm-1 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010d.pxp ; Lay:5; Gr:11; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141010.xlsx; sheet: “int.ratios”

https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131209.pptx : H*(n=3) + Br * https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-131209b.pxp

6pp 3S-vs l( J´); exp: 141014 & 141015 Angular distribution analysis (in preparation):

235.950 235.945 235.940 235.950 nm 235.945 235.940

235.935 235.930 235.925 235.935 235.930 235.925

235.920 235.915 235.910 235.905 235.900 235.895

235.890 235.885 235.880 235.875 235.870 235.865

235.860 235.855 235.850 235.845 235.870 235.865

6pp 3S-vs l( J´); exp: 141014 & 141015 pix HBr+/HBr+* H*+ H*+ Br* Br H*(n=3) + Br (?) pix https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141117.pxp ; Lay:12; Gr: 0

6pp 3S-vs l( J´); exp: 141014 & 141015 q l(exp)/nm= 235.925 235.950 https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141114a.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/XLS_141114b.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141117.pxp ; Lay:6; Gr: 2

6pp 3S-vs l( J´); exp: 141014 & 141015 q q l(exp)/ l(exp)/ nm= nm= 235.900 235.950 l(exp)/ nm= 235.845 235.895 q q https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141114a.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/XLS_141114b.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141117.pxp ; Lay:7; Gr: 7,10

6pp 3S-vs l( J´); exp: 141014 & 141015 q q l(exp)/ l(exp)/ nm= nm= 235.900 235.950 l(exp)/ nm= 235.845 235.895 q q https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141114a.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/XLS_141114b.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141117.pxp ; Lay:8; Gr: 11,12

6pp 3S-vs l( J´); exp: 141014 & 141015 q q l(exp)/ l(exp)/ nm= nm= 235.900 235.950 l(exp)/ nm= 235.845 235.895 q q https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141114a.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/XLS_141114b.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141117.pxp ; Lay:9; Gr: 16,17

6pp 3S-vs l( J´); exp: 141014 & 141015 q q l(exp)/ l(exp)/ nm= nm= 235.900 235.950 l(exp)/ nm= 235.845 235.895 q q https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141114a.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/XLS_141114b.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141117.pxp ; Lay:10; Gr: 19,18

6pp 3S-vs l( J´); exp: 141014 & 141015; beta2 vs l(exp) D,F (HBr+/HBr+*) b2 B (H*+Br*) C (H*+Br) A (H**+Br)? l (exp) / (~J´) https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141114a.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141114b.xlsx https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141117.pxp ; Lay:11; Gr:1

6pp 3S-vs l( J´); exp: 141014 & 141015 Comments: The HBr+/HBr+* signals are close to be purely parallel The H*+Br* signal shows an increasing parallel character with l / J´ The H*+Br signal is close to „neutral „ (neither paralles or perpendicular throughout The H** + Br (?) signal is perpendicular

6pp 3S-vs l( J´); exp: 141014 & 141015 Prediction calculations for KER peaks:

6pp 3S-vs l( J´); exp: 141014 & 141015; prediction calculations for J´= 6 - 8/for H*+Br/Br* l/Lamda Exp. /nm= 235.952 235.950 235.945 235.940 ca. J´= 8 235.935 ca. J´= 7 235.930 235.925 235.920 235.915 ca. J´= 6 235.910 235.905 235.900 H*+ Br KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141118.pxp ; Lay:5; Gr:11; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141117.xlsx ; sheet:KER, I,II

6pp 3S-vs l( J´); exp: 141014 & 141015; prediction calculations for J´= 0 – 5/for H*+Br/Br* Lamda/nm= 235.900 ca. J´= 5 235.895 235.890 235.885 ca. J´= 4 235.880 235.875 ca. J´= 3 235.870 ca. J´=2 235.865 ca. J´= 1 235.860 ca. J´= 0 235.855 235.850 235.845 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141118.pxp ; Lay:6; Gr:12; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141117.xlsx ; sheet:KER, I,II

Now let´s perform prediction calculations for J´ ca. 5-8 with respect to HBr+/HBr+*:

6pp 3S-vs l( J´); exp: 141014 Landa/nm= KER/eV Could be due to H*(n=3) + Br See: https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131209.pptx Landa/nm= 235.952 235.950 235.945 235.940 ca. J´= 8 235.935 ca. J´= 7 235.930 235.925 235.920 235.915 ca. J´= 6 235.910 235.905 235.900 ca. J´= 5 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141010.pxp ; Lay:5; Gr:11;

Comment: The structural changes with l / J´ suggest that higher v+ levels are populated as J´ increases from 5 to 8 suggesting that longer internuclear distance transitions are occuring as J´changes from 5 to 8 OR 3/2 <- 3/2 transitions increasing over ½ <- ½ transitions as J´ changes from 5 to 8

Based on Fig. 153 p: 320 in Herzberg (Spectra of diatomic molecules): transitions from (J1,J2) to (L,S) coupling for the molecular states arising from 3P + 2S of the separated atoms the following holds for HBr+ H + Br + : Relative Energy1) 4P 2S1/2 + 3P0 1/2 3837.5 cm-1 1/2 2S 1/2 3136.4 cm-1 2S1/2 + 3P1 3/2 4S 1/2 2S1/2 + 3P2 2P 3/2 HBr+ H(2S1/2)+Br+(3PJ) 1) From NIST, atomic energy levels for Br+

Hence the assymptotic values of the HBr+(3/2) and HBr+ Hence the assymptotic values of the HBr+(3/2) and HBr+*(1/2) states correspond to H + Br+(3P1) and H + Br+(3P0) respectively.

E/cm-1 E(1/2; v+) E(3/2; v+) V+ E(H+Br+(3P0)) = D(HBr)+IE(Br)+E(Br+ (3P0)) E(H+Br+(3P1)) = D(HBr)+IE(Br)+E(Br+ (3P1)) E(H+Br+(3P2)) = D(HBr)+IE(Br)+E(Br+ (3P2)) E(1/2; v+) E(3/2; v+) V+ https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141118.pxp ; Lay:11; Gr:18; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141117.xlsx ; sheet:KER, I,II

E/cm-1 v+(1/2) v+(3/2) E(1/2; v+) E(3/2; v+) V+ 28 129332.35 E(H+Br+(3P0)) = D(HBr)+IE(Br)+E(Br+(3P0)) 31 128631.25 v+(1/2) E(H+Br+(3P1)) = D(HBr)+IE(Br)+E(Br+(3P1)) J´=J´´= 8 7 6 5 21 25 v+(3/2) 24 20 E(1/2; v+) E(3/2; v+) 125494.85 E(H+Br+(3P2)) = D(HBr)+IE(Br)+E(Br+ (3P2)) V+ https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141117.xlsx ; sheet:KER, I,II https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151020.xlsx ; sheet:KER, I,II https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141118a.pxp ; Lay:11; Gr:18;

6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.900, ca. J´= 5 See slide 58 See slide 58 v+(1/2)= 11 16 21 ½ <- ½ 3/2 <- 3/2 v+(3/2)= 10 15 25 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141117a.xlsx ; sheets:KER, I,II & KER,III,IV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141118a.pxp ; Lay:12; Gr:19;

6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.940, ca. J´= 8 See slide 58 See slide 58 v+(1/2)= 11 16 21 ½ <- ½ 3/2 <- 3/2 v+(3/2)= 10 15 25 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141117a.xlsx ; sheets:KER, I,II & KER,III,IV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141118a.pxp ; Lay:13; Gr:20;

6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.900, ca. J´= 5 v+max (see slide 58) v+max(see slide 58) v+(1/2)= 11 16 28 ½ <- ½ 3/2 <- 3/2 v+(3/2)= 10 15 31 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-141117b.xlsx ; sheets:KER, I,II & KER,III,IV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-141118a.pxp ; Lay:14; Gr:21;

6pp 3S-vs l( J´); exp: 141014 & 141015 comments: v+ assignments of peaks in v + structure of HBr +/HBr + * is not clear Possibly because of uncertainty in evaluations of v + peaks near the upper limit (i.e near v+(max)) The highest energy peak in the HBr + /HBr + * (v+) structure, which is found to increase as J´ increases from 5 to 8 must be due to HBr + (not HBr+*) based on the energetics. Most probably the 2.87 eV peak, which is found to decrease as J´ increases from 5 to 8 then is due to HBr+*.

E/cm-1 v+(1/2) v+(3/2) E(1/2; v+) E(3/2; v+) V+ Curve lowered by changing wexe = 44.045919 - > 45.045095 (1/2) Curve lowered by changing wexe = 45.175095 - > 45.475095 (3/2) E/cm-1 28 129332.35 E(H+Br+(3P0)) = D(HBr)+IE(Br)+E(Br+(3P0)) 128631.25 v+(1/2) 30 31 E(H+Br+(3P1)) = D(HBr)+IE(Br)+E(Br+(3P1)) J´=J´´= 8 7 6 5 v+(3/2) 25 21 24 E(1/2; v+) 20 E(3/2; v+) 125494.85 E(H+Br+(3P2)) = D(HBr)+IE(Br)+E(Br+ (3P2)) V+ https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151020.pxp ; Lay:11; Gr:18; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151020.xlsx ; sheet:KER, I,II

6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.900, ca. J´= 5 v+max (see slide 63) v+max(see slide 63) v+(1/2)= 11 16 20 28 ½ <- ½ 3/2 <- 3/2 v+(3/2)= 10 15 19 31 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151020b.xlsx ; sheet:KER, I,II & III,IV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151020a.pxp ; Lay:13; Gr:20;

6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.940, ca. J´= 8 See slide 63 See slide 63 v+(1/2)= 11 16 21 28 ½ <- ½ 3/2 <- 3/2 v+(3/2)= 10 15 19 31 KER/eV https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151020b.xlsx ; sheet:KER, I,II & III,IV https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151020a.pxp ; Lay:14; Gr:21;

6pp 3S-vs l( J´); exp: 141014 & 141015 comments: Although it is not clear what v+ levels the individual peaks in the HBr+/HBr+* KER spectrum correspond to, clearly higher v+ levels are populated via J´= 8 excitation (hence via the V state) than via v´= 5 which makes sense by comparison with earlier work on HCl by Loock and our conclusions concerning HI in our latest subission. 151021: I checked how shifting of 2hv by 10.5 cm-1 compared to a corresponding shift of l by using the following criteria: Assume that l(measured) = 235.860 corresponds to 2hv(J´=J´´ = 0) = 84806.5 cm-1 (according to C & G: https://notendur.hi.is/~agust/rannsoknir/papers/jcp93-4624-90.pdf, see Page 4632) => i.e. l(measured) = 235.860 <-> L = 235,8309799 nm and shifted all l(measured) By the difference (= 235.860- 235,8309799= 0.029):

B C D E F G Lamda 2hv from column F 2hv in D shifted: assuming 235.860 <-> lamda 1hv 2hv 2hv +10,5 84806.5 cm-1 235,95 42381,86 84763,72 84774,22113 235,9209799 84774,14771 235,945 42382,76 84765,52 84776,01739 235,9159799 84775,94441 235,94 42383,66 84767,31 84777,81372 235,9109799 84777,74119 235,935 42384,56 84769,11 84779,61014 235,9059799 84779,53804 235,93 42385,45 84770,91 84781,40662 235,9009799 84781,33497 235,925 42386,35 84772,7 84783,20319 235,8959799 84783,13198 235,92 42387,25 84774,5 84784,99983 235,8909799 84784,92906 235,915 42388,15 84776,3 84786,79655 235,8859799 84786,72622 235,91 42389,05 84778,09 84788,59334 235,8809799 84788,52346 235,905 42389,95 84779,89 84790,39021 235,8759799 84790,32077 235,9 42390,84 84781,69 84792,18716 235,8709799 84792,11815 235,895 42391,74 84783,48 84793,98418 235,8659799 84793,91562 235,89 42392,64 84785,28 84795,78128 235,8609799 84795,71316 235,885 42393,54 84787,08 84797,57845 235,8559799 84797,51077 235,88 42394,44 84788,88 84799,3757 235,8509799 84799,30847 235,875 42395,34 84790,67 84801,17303 235,8459799 84801,10624 235,87 42396,24 84792,47 84802,97043 235,8409799 84802,90408 235,865 42397,13 84794,27 84804,76791 235,8359799 84804,702 235,86 42398,03 84796,07 84806,56546 235,8309799 84806,5 235,855 42398,93 84797,86 84808,36309 235,8259799 84808,29807 235,85 42399,83 84799,66 84810,1608 235,8209799 84810,09622 235,845 42400,73 84801,46 84811,95859 235,8159799 84811,89445 Since the values in columns E and G are virtually the same the cm-1 shift (by 10.5 cm-1) Is OK https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151021.xlsx; sheet: int. ratios

Red lines: see slide above (no. 67) 6pp 3S-vs l( J´); exp: 141014 & 141015 Red lines: see slide above (no. 67) I(H*+Br*)/ I(H*+Br) 235.950 nm = lm 235.855 nm= lm Rotational lines J´=J´´= 9 8 7 6 5 4 2 1 0 2hn/ (shifted up by 10.5 cm-1) cm-1 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151021.pxp ; Lay:8; Gr:14; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151021.xlsx

J´ V1S+(v´=m+18) 5 : Energy / cm-1 : J´ Near-degenerate Interaction W1S+(n=6; v´=0) 8 8 : 7 2 : V1S+(v´=m+17) 4 : 6pp3S-(v´=0)

J´= J´= J´´ J´´ 8 8 7 7 E/cm-1 E/cm-1 6 6 5 5 4 4 3 3 2 2 1 1 H+ H*(n=3) + Br H*(n=2) + Br* HBr+*(v+)/ HBr+(v+) H*(n=3) + Br H*(n=2) + Br* HBr+*(v+)/ HBr+(v+) H*(n=2) + Br H*(n=2) + Br J´= J´´ J´= J´´ Near-degenerate interaction region Near-degenerate interaction region 8 8 7 7 E/cm-1 6 E/cm-1 6 5 5 4 4 3 3 2 2 1 1 H+ H79Br+ https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151022.pxp ; Lay:7; Gr:13; https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151021a.pxp ; Lay:7; Gr:13;

H+ VMI – REMPI for resonance excitations via the 6pp 3S-(v´= 0) Rydberg state for J´= J´´ (Q lines) = 0 – 8. KER spectra recorded in steps of Dl = 0.005 nm (left). REMPI spectra for H+ and H79Br+ detections and J´/J´´ assignments tilted to the right. KER spectra closest to rotational lines are highlighted in red Judging from mass resolved REMPI analysis, near-degenerate interaction between the 6pp 3S-(v´= 0) Rydberg state and the valence (ion-pair) state V 1S+ (v´= m + 17) is occuring for J´ ~ 8 (7). According to theVMI data, for J´ ~ 8, 1) -H*(n = 3)+ Br appears, 2) – relative signal due to H*(n=2) + Br* increases, 3) – signals for high v+ levels of HBr+/HBr+* Increase relative to those for lower v+.

Near-degenerate interaction region Irel Irel Irel (HBr+/HBr+*) Irel (Br*) J´= J´´= 8 7 6 5 4 3 2 1 0 Irel (Br) 2hn / cm-1 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151022a.pxp ; Lay:9; Gr:15;

H+ VMI – REMPI for resonance excitations via the 6pp 3S-(v´= 0) Rydberg state for J´= J´´ (Q lines) = 0 – 8. Irel(i) = I(channel i) /I(total) vs. 2hn / cm-1 Clearly : Irel(Br*) increases in the near-degenerate interaction region Irel(Br) in constant/unchanged with 2hn Irel(HBr+/HBr+*) decreases in the near-degenerate interaction region

Irel Irel Irel (HBr+/HBr+*) Irel (H* +Br*) J´= J´´= 8 7 6 5 4 3 2 1 0 From Arnar

6pp 3S-vs l( J´); exp: 141014 & 141015; beta2 vs 2hn Near-degenerate interaction region D(low v+),F(High v+) (HBr+/HBr+*) b2 B (H*(n=2)+Br*) C(H*(n=2)+Br) A (H**(n=3)+Br)? J´= J´´= 8 7 6 5 4 3 2 1 0 2hn / cm-1 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151021b.pxp ; Lay:13; Gr:3;

Comments: The HBr+/HBr+* signals are close to be purely parallel The H*(n=2) + Br* signal shows an increasing parallel character with l / J´ The H*(n=2) + Br signal is close to „neutral „ (neither paralles or perpendicular throughout The H**(n=3) + Br signal is perpendicular

l(measured) = 235.940 = 235.911 nm 2hn = 84777.7 cm-1 J´= J´´ ~ 8 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151021b.pxp ; Gr:4; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151021.xlsx

l(measured) = 235.935 = 235.906 nm 2hn = 84779.5 cm-1 J´= J´´ ~ 7 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151021b.pxp ; Gr:25; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151021.xlsx

l(measured) = 235.915 = 235.886 nm 2hn = 84786.7 cm-1 J´= J´´ ~ 6 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151021b.pxp ; Gr:23; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151021.xlsx

l(measured) = 235.900 = 235.871 nm 2hn = 84792.1 cm-1 J´= J´´ ~ 5 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151021b.pxp ; Gr:8; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151021.xlsx

l(measured) = 235.885 = 235.856 nm 2hn = 84797.5 cm-1 J´= J´´ ~ 4 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151021b.pxp ; Gr:6; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151021.xlsx

l(measured) = 235.870 = 235.841 nm 2hn = 84802.9 cm-1 J´= J´´ ~ 2 https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-151021b.pxp ; Gr:5; https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-151021.xlsx

6pp 3S-vs l( J´); beta4 vs 2hn Near-degenerate interaction region C(H*(n=2)+Br) A (H**(n=3)+Br)? B (H*(n=2)+Br*) b4 F(High v+), D(low v+), (HBr+/HBr+*) J´= J´´= 8 7 6 5 4 3 2 1 0 2hn / cm-1

H*+Br* H*+Br E B V J´= 8 (6ppi(0)) J´= 8 (V(m+17)) J´= 0 (6ppi(0)) https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-160217.pxp, Lay:3, Gr: 0