Volume 4, Issue 1, Pages (January 2018)

Slides:



Advertisements
Similar presentations
Volume 109, Issue 7, Pages (October 2015)
Advertisements

Crystal Structure of the Tandem Phosphatase Domains of RPTP LAR
Lights, X-Rays, Oxygen! Cell
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Hydroxide and Proton Migration in Aquaporins
Crystal Structure of Manganese Catalase from Lactobacillus plantarum
Conformational Change in an MFS Protein: MD Simulations of LacY
Gennady V. Miloshevsky, Peter C. Jordan  Structure 
Volume 21, Issue 1, Pages (January 2013)
Cell Division: Experiments and Modelling Unite to Resolve the Middle
Volume 124, Issue 1, Pages (January 2006)
Volume 23, Issue 12, Pages (December 2015)
Crystal Structure of the 100 kDa Arsenite Oxidase from Alcaligenes faecalis in Two Crystal Forms at 1.64 Å and 2.03 Å  Paul J. Ellis, Thomas Conrads,
Volume 21, Issue 1, Pages (January 2013)
Volume 124, Issue 2, Pages (January 2006)
DNA Nanomechanics in the Nucleosome
Mark Ultsch, Nathalie A Lokker, Paul J Godowski, Abraham M de Vos 
Volume 5, Issue 3, Pages (March 1997)
Hydration and DNA Recognition by Homeodomains
The Influence of Amino Acid Protonation States on Molecular Dynamics Simulations of the Bacterial Porin OmpF  Sameer Varma, See-Wing Chiu, Eric Jakobsson 
Volume 15, Issue 1, Pages (January 2007)
Volume 26, Issue 3, Pages e3 (March 2018)
Crystal Structure of ARF1•Sec7 Complexed with Brefeldin A and Its Implications for the Guanine Nucleotide Exchange Mechanism  Elena Mossessova, Richard.
Volume 7, Issue 2, Pages (February 1999)
Volume 15, Issue 9, Pages (September 2007)
Crystal Structures of a Novel Ferric Reductase from the Hyperthermophilic Archaeon Archaeoglobus fulgidus and Its Complex with NADP+  Hsiu-Ju Chiu, Eric.
Volume 5, Issue 1, Pages (January 2019)
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Dániel Szöllősi, Gergely Szakács, Peter Chiba, Thomas Stockner 
Structural Analysis of Ligand Stimulation of the Histidine Kinase NarX
Andrew H. Huber, W.James Nelson, William I. Weis  Cell 
Volume 96, Issue 7, Pages (April 2009)
Structural Roles of Monovalent Cations in the HDV Ribozyme
Qian Steven Xu, Rebecca B. Kucera, Richard J. Roberts, Hwai-Chen Guo 
Till Siebenmorgen, Martin Zacharias  Biophysical Journal 
Volume 6, Issue 6, Pages (December 2000)
The basis for K-Ras4B binding specificity to protein farnesyl-transferase revealed by 2 Å resolution ternary complex structures  Stephen B Long, Patrick.
The structure of an RNA dodecamer shows how tandem U–U base pairs increase the range of stable RNA structures and the diversity of recognition sites 
A Radical Mechanism for Frustrated Lewis Pair Reactivity
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
Open-State Models of a Potassium Channel
Structural Basis of cis- and trans-Combretastatin Binding to Tubulin
Volume 4, Issue 5, Pages (May 2018)
Volume 114, Issue 1, Pages (January 2018)
Ion-Induced Defect Permeation of Lipid Membranes
Volume 1, Issue 1, Pages (July 2016)
Volume 14, Issue 6, Pages (June 2006)
Carl C. Correll, Betty Freeborn, Peter B. Moore, Thomas A. Steitz  Cell 
Structure of a water soluble fragment of the ‘Rieske’ iron–sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing.
Volume 4, Issue 1, Pages (January 2018)
Mechanism of Anionic Conduction across ClC
Aamod V. Desai, Arkendu Roy, Partha Samanta, Biplab Manna, Sujit K
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Bin Li, Hui-Min Wen, Wei Zhou, Jeff Q. Xu, Banglin Chen  Chem 
A New Horizon for Fischer-Tropsch Synthesis
Gennady V. Miloshevsky, Peter C. Jordan  Structure 
Peter König, Rafael Giraldo, Lynda Chapman, Daniela Rhodes  Cell 
Volume 4, Issue 3, Pages (March 2018)
Sebastian Fritsch, Ivaylo Ivanov, Hailong Wang, Xiaolin Cheng 
Volume 2, Issue 6, Pages (June 2017)
Volume 126, Issue 4, Pages (August 2006)
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
Sabine Pokutta, William I. Weis  Molecular Cell 
Volume 7, Issue 2, Pages (February 1999)
Helium Shows New Chemistry Not Seen Anywhere Else
Volume 98, Issue 4, Pages (February 2010)
Volume 3, Issue 5, Pages (November 2017)
Molecular Dynamics Simulation of a Synthetic Ion Channel
Volume 3, Issue 5, Pages (November 2017)
Presentation transcript:

Volume 4, Issue 1, Pages 94-105 (January 2018) Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water  Sk Md Towsif Abtab, Dalal Alezi, Prashant M. Bhatt, Aleksander Shkurenko, Youssef Belmabkhout, Himanshu Aggarwal, Łukasz J. Weseliński, Norah Alsadun, Umer Samin, Mohamed Nejib Hedhili, Mohamed Eddaoudi  Chem  Volume 4, Issue 1, Pages 94-105 (January 2018) DOI: 10.1016/j.chempr.2017.11.005 Copyright © 2017 Terms and Conditions

Chem 2018 4, 94-105DOI: (10.1016/j.chempr.2017.11.005) Copyright © 2017 Terms and Conditions

Figure 1 Select Fragments from the Crystal Structure of Cr-soc-MOF-1 (A) The μ3-oxygen-centered trinuclear Cr(III) carboxylate clusters and the deprotonated organic linker (TCPT4−). (B) Representation of the well-defined channels and cages found in Cr-soc-MOF-1. Color code: C, gray; O, red; Cl, pink; Cr, green. Hydrogen atoms are omitted for clarity. Chem 2018 4, 94-105DOI: (10.1016/j.chempr.2017.11.005) Copyright © 2017 Terms and Conditions

Figure 2 Structural Characterization of Cr-soc-MOF-1 (A) Energy-dispersive X-ray spectroscopy elemental mapping analysis of Cr-soc-MOF-1. (B) High-resolution X-ray photoelectron spectroscopy spectrum of the Cr 2p core level of the Cr-soc-MOF-1 sample, the binding energies of the components of the Cr 2p doublet, and their corresponding satellites are characteristic of the Cr3+ oxidation state of chromium. (C) Experimental and calculated PXRD patterns for Cr-soc-MOF-1, indicating the phase purity of the sample. (D) Nitrogen adsorption isotherm at 77 K on Cr-soc-MOF-1. Chem 2018 4, 94-105DOI: (10.1016/j.chempr.2017.11.005) Copyright © 2017 Terms and Conditions

Figure 3 Water Adsorption Study of Cr-soc-MOF-1 (A) Water adsorption (solid spheres) and desorption (empty circles) isotherms at 298 K for activated Cr-soc-MOF-1. (B) 100 cycles of water uptake profile versus relative humidity of the Cr-soc-MOF-1 at 298 K. Chem 2018 4, 94-105DOI: (10.1016/j.chempr.2017.11.005) Copyright © 2017 Terms and Conditions

Figure 4 Correlation between Pore Volume and Water Uptake Capacity for Cr-soc-MOF-1 and the Best-Performing Materials Chem 2018 4, 94-105DOI: (10.1016/j.chempr.2017.11.005) Copyright © 2017 Terms and Conditions

Figure 5 Working Capacity at Different Relative Humidity Ranges (35%–65%, 25%–75%, and 25%–85%) Relevant to Indoor Moisture Control at Room Temperature Chem 2018 4, 94-105DOI: (10.1016/j.chempr.2017.11.005) Copyright © 2017 Terms and Conditions

Figure 6 Crystal Structure of the Hydrated Cr-soc-MOF-1 (3) (A) Packing diagram along the c axis with a hydrogen bonding network shown. (B) The ordered 114 water molecules cluster in the cubic cage. (C) The cluster decomposition: water heptamers at the vertices of the cube (red), a single water molecule at the edges (yellow), hexamers at the faces (blue), inner cube (green), and a dimer (pink). Hydrogen atoms are omitted for clarity. Chem 2018 4, 94-105DOI: (10.1016/j.chempr.2017.11.005) Copyright © 2017 Terms and Conditions