Low Level RF Status Outline LLRF controls system overview

Slides:



Advertisements
Similar presentations
Hardware Integration of the Prototype Wes Grammer NRAO September 24-26, 2012EOVSA Prototype Review1.
Advertisements

Overview of SMTF RF Systems Brian Chase. Overview Scope of RF Systems RF & LLRF Collaboration LLRF Specifications for SMTF Progress So Far Status of progress.
XTCAV X-Band Transverse Deflecting Cavity Project Overview Patrick Krejcik Yuantao Ding, Joe Frisch.
Digital RF Stabilization System Based on MicroTCA Technology - Libera LLRF Robert Černe May 2010, RT10, Lisboa
Test of LLRF at SPARC Marco Bellaveglia INFN – LNF Reporting for:
The LAr ROD Project and Online Activities Arno Straessner and Alain, Daniel, Annie, Manuel, Imma, Eric, Jean-Pierre,... Journée de réflexion du DPNC Centre.
R. Akre, P. Emma, P. Krejcik LCLS April 29, 2004 LCLS RF Stability Requirements LCLS Requirements The SLAC Linac.
Beam Loss Analysis Tool for the CTF3 PETS Tank M. Velasco, T. Lefevre, R. Scheidegger, M. Wood, J. Hebden, G. Simpson Northwestern University, Evanston,
Ron Akre, Dayle Kotturi LCLS LLRF April 16, 2007 Linac.
Dayle Kotturi SLC April 29, 2004 Outline Motivation Key Components Status Update SLC / EPICS Timing Software Tasks Hardware.
Patrick Krejcik LCLS November 11-12, 2008 SLAC National Accelerator Laboratory 1 Post-commissioning Controls Enhancements.
Tom Kubicki.  Booster HLRF System to be upgraded using 1kW Solid State Driver (SSD) Amplifiers.  Used to drive the 200kW Power Amplifier  Eliminates.
Overview of the LLRF Activities at SLAC
Status of MicroTCA LLRF Development Zheqiao Geng On behalf of the LLRF AIP team 6/4/2012.
ANNEX. WP 1.04, Michael Ebert2MAC PETRA-III Review Meeting, DESY,29th November 2006 Sandblasted Center Conductor of a Cavity Input Coupler R a =
LLRF Phase Reference System The LCLS linac is broken down into 4 separate linac sections. The LCLS injector will reside in an off axis tunnel at the end.
LCLS-II Linac LLRF Control System – L1, BC1 Zheqiao Geng Final Design Review May 7, 2012.
LCLS-II Injector LLRF System – MicroTCA Based Design Zheqiao Geng 6/4/2012.
ATF2 Q-BPM System 19 Dec Fifth ATF2 Project Meeting J. May, D. McCormick, T. Smith (SLAC) S. Boogert (RH) B. Meller (Cornell) Y. Honda (KEK)
Booster Cogging Upgrades Craig Drennan, Kiyomi Seiya, Alex Waller.
Dayle Kotturi Lehman Review May 10-12, 2005 Low Level RF Outline Scope Local feedback loop requirements Solutions Costs How this.
Ron Akre, Dayle Kotturi LCLS LLRF September 19, 2006.
LCLS-II Linac LLRF Control System – L2, L3 Zheqiao Geng Preliminary Design Review May 7, 2012.
Grzegorz Jablonski, Technical University of Lodz, Department of Microelectronics and Computer Science XFEL-LLRF-ATCA Meeting, 3-4 December 2007 XFEL The.
LLRF-05 Oct.10,20051 Digital LLRF feedback control system for the J-PARC linac Shin MICHIZONO KEK, High Energy Accelerator Research Organization (JAPAN)
Initial Performance Results of the APS P0 (Transverse Bunch-to-Bunch) Feedback System N. DiMonte#, C.-Y. Yao, Argonne National Laboratory, Argonne, IL.
Dayle Kotturi System Concept Review/Preliminary Design Review November 16, 2005 LLRF Outline System Concept Review Requirements.
1 ATF2 Q BPM electronics Specification (Y. Honda, ) Design System –Hardware layout –Software –Calibration Testing Production schedule ATF2 electronics.
Digital Phase Control System for SSRF LINAC C.X. Yin, D.K. Liu, L.Y. Yu SINAP, China
Digital Phase Control System for SSRF LINAC C.X. Yin, D.K. Liu, L.Y. Yu SINAP, China
XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser 1 Frank Ludwig, DESY XFEL-LLRF-ATCA Meeting, 3-4 December 2007 Downconverter Cavity Field.
Fast Fault Finder A Machine Protection Component.
LCLS LLRF System October 10-13, 2005 LLRF05 B. Hong, R. Akre, A. Hill, D. Kotturi, H. Schwarz SLAC, Stanford, Menlo Park, CA 94025, USA Work supported.
Ron Akre, Dayle Kotturi Lehman October 24-26, 2006 Linac.
LLRF 15 Daresbury Andrew Moss ASTeC, STFC Daresbury Laboratory.
S. Smith LCLS Facility Advisory October 12, Beam Position Monitors Facility Advisory Committee October 12, 2006.
MO/LO Performance Summary and Maintenance Plans Tomasz Plawski Jefferson Lab OPS Stay Retreat, July 15th, 2015.
RF Control Electronics for Linacs Overview of activities at Electronics Division, BARC RF control electronics for: 1.Super-conducting Heavy Ion Linacs.
Digital LLRF plans at the Australian Synchrotron P.Corlett, K.Zingre, G. LeBlanc Australian Synchrotron, 800 Blackburn Road, Clayton 3168, Victoria, Australia.
Current Status of QBPM Electronics and Magnet Movers D. McCormick, J Nelson, G White SLAC S Boogert Royal Holloway Y. Honda, Y.Inoue KEK.
LLRF development of SSRF RF Group and Linac Group
Cost Optimization Models for SRF Linacs
SLC-Aware IOC LCLS Collaboration Jan 26, 2005
ILC LLRF Status Ruben Carcagno, Brian Chase
Timing and Event System S. Allison, M. Browne, B. Dalesio, J
LLRF Controls Outline Requirements External Interfaces Schedule Design
LLRF and feedback Outline Scope LLRF Requirements
LLRF Functionality Stefan Simrock How to edit the title slide
LLRF and Beam-based Longitudinal Feedback Readiness
LCLS Timing Outline Scope The order of things
A Portion of the SCP RF Control System LCLS Related
Fill-pattern Control System for KEKB
LCLS Event System - Software
Low Level RF Status Outline LLRF controls system overview
Sector 0 RF System Installation of components (Master Amplifier and PEP Phase Shifter) in October down time. Testing and commissioning during October.
LLRF Control System Outline Scope Requirements Design Considerations
LCLS Timing Outline Scope The order of things
RF Pulse Shaping.
LCLS RF Stability Requirements
Report on ATF2 Third Project Meeting ATF2 Magnet Movers ATF2 Q-BPM Electronics Is SLAC ILC Instrumentation Group a good name?
LLRF Control System Outline Scope Requirements Options considered
Linac Coherent Light Source (LCLS) LLRF Preliminary Design Review LLRF Monitor and Control System September 26, 2005 Ron Akre.
Linac Coherent Light Source (LCLS) Low Level RF Status
Low Level RF Design Outline Scope Requirements Options considered
Undulator Cavity BPM System Status
Operational Experience with LCLS RF systems
Linac Coherent Light Source (LCLS) Low Level RF Status
Undulator Cavity BPM Status
Low Level RF Status Outline Overview showing hardware instances
Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 February 8, 2006.
Presentation transcript:

Low Level RF Status Outline LLRF controls system overview LLRF controls software status for Phase and Amplitude Detector (PAD) VME local feedback and timing trigger source Phase and Amplitude Controller (PAC) Host applications LLRF controls software testing status LLRF documentation and review status See SC1/SC2 Accelerator Systems LLRF Status and Design presentation for safety, hardware status, system requirements, cable routing and commissioning test plan

Status of Software for Injector Turn-on PAD Software Operational PAC Software Local Feedback (in VME) Data analysis shows simple feedback algorithm will work. Optimization of algorithm continues. Time measurement: measure time needed for data acq, for transfer to VME, for VME processing, for transfer to PAC. Time measurement: needed for multiple local loops. Eg. Measure scalability from 1 to N instances. This IOC needs to be SLC-aware This IOC uses EVR and needs to set up trigger delays in response to timing events RF Gun Temperature Feedback In Design Calibration and Test Host Applications In process of specifying Storing of boot params, serial numbers, etc in flash or on the board for PAD and PAC

PAD Software Different LLRF apps need different calculations There are 5 different algorithms: AVG+STD – calculate average I and Q and variance of I and Q RF WF – calculate average I and Q WF – calculate average of sample RF WF2 – calculate average I and Q of two samples IQ Cal – send 64K raw data waveform Each channel on a PAD can run a different algorithm with its own sample size and offset Each PAD can run in CALIBRATION or RUNNING mode, which use different algorithms

PAD GUI here

PAC Software PACs can run in either CALIBRATING or RUNNING mode. A state machine keeps track. If CALIBRATING, calibration waveforms are loaded into FPGA and I and Q gains and offsets can be adjusted. If RUNNING, I and Q gains and offsets are fixed, operational waveforms are loaded into FPGA and I and Q adjustments can be applied at the operational frequency.

PAC GUI here

VME Software Generic Feedback algorithm: Phase and amplitude are calculated from I and Q averages from each channel of the PAD Phases are corrected by phase offset correction Amplitudes are corrected by amplitude power correction Phase and amplitudes are weighted by configurable weighting factors to determine one average phase and amplitude Pavg=(P0*PWT0 + P1*PWT1 + P2*PWT2 + P3*PWT3)/4*(ΣPWTi) Aavg=(A0*AWT0 + A1*AWT1 + A2*AWT2 + A3*AWT3)/4*(ΣAWTi) Local or global feedback corrections are applied (0 < A <= 1) Pcor = A(Pdes – Pact) + (1-A)Pcorn-1 Pcorn+1 = A(Pdes n+1 – Pactn+1) + (1-A)Pcorn For amplitude, (Pdes – Pact) is replaced by Pdes/Pact Corrected phase and amplitude is converted to I and Q Corrected I and Q values are sent to PAC

Local feedback

VME Software Beam Phasing Cavity algorithm (for Laser Timing): Two sets of I and Q averages arrive (since there are two windows of interest) Phase1 is calculated from I1 and Q1 Phase2 is calculated from I2 and Q2 Measured beam phase is the y-intercept of the equation to the line of phase as a function of FIFO position Frequency is the slope of the line Amplitude is calculated from I1 and Q1 (only) Phase is corrected by phase offset correction Amplitude is corrected by amplitude power correction Local feedback corrections are applied Corrected phase and amplitude is converted to I and Q Corrected I and Q values are sent to laser PAC

Beam Phase Cavity: calculation of freqency and phase from a line through 2 points

VME Software Other calculations For RF Reference Distribution Phase and amplitude are calculated from I and Q averages from each channel of the PAD Phases are corrected by phase offset correction Amplitudes are corrected by amplitude power correction Standard deviation of I and Q is calculated from I and Q variances from each channel of the PAD

VME GUI here

Host Applications Generic Distribution System PAC PAD Testing Correlation plots Calibration of power levels using beam energy Distribution System Rotate Phase 360 degrees Monitor Phase Errors in Dividers Correct Divider Phase Errors PAC Calibration Mode Operation Generate and Load Waveforms Panels for Phase and Amplitude Adjustment PAD Testing Crosstalk, SNR, Noise Floor Sine Wave Histogram Panels for Phase and Amplitude Monitoring Local Feedback Control Panels

Status of Documentation + Reviews All documentation and reviews are accessible from LLRFhomepage Recent milestones: LLRF Control Design Specification This Engineering Specification Document was signed off by Project Office on 9/27/2006. LLRF Final Design Review This review was held on 9/19/2006. The scope of the review covered: RF Distribution Reference System for Injector Commissioning RF System for Injector Commissioning PAD PAC VME These were the goals given to the committee last September: Injector RF turn on is January 3, 2007. The designs of the prototype PADs and PACs have been built and tested. Fabrication is scheduled for October, 2006. Please review analysis of test data and the proposed design and comment on the proposed systems' ability to meet LCLS specifications. Review our test plans and suggest improvements

Lab Test Setup Reference, PAC, PAD The LCLS RF system duplicated in the lab and used for testing of PADs and PACs. At least two of each frequency generation chassis is built to measure phase noise levels. Most components will have development chassis which can be used as a spare.

LCLS New Reference System Lab Measurements Lab Tests Show Reference System Noise Levels Meet All LCLS Requirements 2856MHz = 70fSrms 2830.5MHz = 70fSrms 25.5MHz = 2pSrms 102MHz = 2pSrms 2856MHz : 22fSrms 10Hz to 10MHz 2830.5MHz : 22fSrms 10Hz to 10MHz John Byrd - LBNL 25.5MHz : 152fSrms 10Hz to 1MHz 102MHz : 281fSrms 10Hz to 10MHz

SLAC Linac RF – New Control The new control system will tie in to the IPA Chassis with 800W of drive power available. The RF Reference will be from the new RF reference system. Solid State Sub-Booster PAC I and Q will be controlled by the PAC chassis, running 16bit DACs at 102MHz. Waveforms to the DACs will be set in an FPGA through a microcontroller running EPICS on RTEMS. Existing System

Linac Station 21-1 Tests (Aug.18, 2006)

Linac 21-1 Test Set-up Power Coupled out from 476MHz MDL drives a 476MHz Amplifier which feeds a 6X Multiplier from 476MHz to 2856MHz. The 2856MHz out drives both the LO generator and the PAC. The 2830.5MHz LO and 102MHz CLK Generator supplies the LO and CLK to the PAD. A CLK output of the PAD drives the PAC CLK. The PAC output drives the SSSB. The SSSB drives the existing IPA chassis The klystron output coupler is used to measure phase and amplitude with the new PAD.

Linac 21-1 Test Results Tests were done in the gallery with no temperature regulation on cables. Average RMS value of 2 second sliding average is 0.068 degrees. Exponential Smoothing Yields the Following Results. Lowest noise is with a time constant of about 2 points.