Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro

Slides:



Advertisements
Similar presentations
Positioning of the TGF‐β3 and BMP receptor complexes on a membrane surface. Positioning of the TGF‐β3 and BMP receptor complexes on a membrane surface.
Advertisements

Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Enteroids can model transport physiology
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Injection of mesenchymal stem cells in perianal fistulas
Figure 1 Patients cured of HCV infection
Scheme of the design of the anti-lysozyme Goldbody.
Figure 5 Lipid droplet consumption
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Recognition of double‐stranded telomeric DNA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Figure 1 HCV life cycle and site of action of DAAs
Figure 6 Combination therapy for HCC
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Identification of Structural Mechanisms of HIV-1 Protease Specificity Using Computational Peptide Docking: Implications for Drug Resistance  Sidhartha.
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Example wireless motility recording
Figure 7 Example colonic high-resolution manometry
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
Figure 2 13C-octanoic acid gastric emptying breath test
AG-221 structure and binding characteristics.
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Figure 3 Mechanisms of NS5B-mediated RNA synthesis
Figure 4 Diverse molecular mechanisms of long non-coding RNAs
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Jean–Michel Pawlotsky, Stéphane Chevaliez, John G. McHutchison 
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Complex crystal structures of oxaborole and diazaborine inhibitors with M. tuberculosis InhA. Complex crystal structures of oxaborole and diazaborine inhibitors.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Systems biological model of IBS
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Molecular model of the PTH(1–34)•PTHR1 complex.
Christoph Sarrazin, Stefan Zeuzem  Gastroenterology 
Structural Basis for Substrate Selection by T7 RNA Polymerase
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Cardiol. doi: /nrcardio
Volume 15, Issue 2, Pages (February 2007)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
A Drug-Drug Interaction Crystallizes a New Entry Point into the UPR
Volume 8, Issue 10, Pages (October 2000)
Figure 2 Lifelong influences on the gut microbiome from
Volume 15, Issue 6, Pages (December 2001)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Crystal Structure of the Carboxyltransferase Domain of Acetyl-Coenzyme A Carboxylase in Complex with CP   Hailong Zhang, Benjamin Tweel, Jiang Li,
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Motif sequence logo and surface analysis of LC8.
Drug transport mechanism of AcrB.
Selectivity-determining regions
Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes  Yu-ming M. Huang, Wei Chen, Michael J.
Volume 8, Issue 10, Pages (October 2000)
Comparison of the predicted binding models of mHA1, mHA6, and mHA 11 to the tubulin protein with that of DAMA-colchicine in the crystal structure. Comparison.
Volume 24, Issue 9, Pages (September 2016)
Structure of the HLA-DR10 β subunit and ligand binding sites.
Rapid nucleotide exchange allows irreversible interactions between GDP-bound KRASG12C (middle) and ARS-853 (right). Rapid nucleotide exchange allows irreversible.
Structure of an ATP-bound ABC dimer.
Presentation transcript:

Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2016.60 Figure 2 Location of resistance-associated amino acid substitutions in relation to drug binding Figure 2 | Location of resistance-associated amino acid substitutions in relation to drug binding. a | Crystal structure of NS3/4A protease in complex with the protease inhibitor asunaprevir (Protein Data Bank: 4WH6; Soumana, D. I. et al. ACS Chem. Biol. 9, 2485–2490 (2014)). The protease is shown in yellow and the inhibitor in blue. The Arg155Lys (R155K) substitution (red) is located in close proximity to the inhibitor. b | Crystal structure of NS5B (yellow) with primer (cyan), template (green), and the bound inhibitor (blue) sofosbuvir (Protein Data Bank: 4WTC; Appleby, T. C. et al. Science 347, 771–775 (2015)). Amino acids associated with decreased susceptibility to sofosbuvir are shown in red (Ser282) and magenta (Leu159). c | Structure of NS5A in the 'open' dimer conformation (left, Protein Data Bank: 1ZH1; Tellinghuisen, T. L. et al. Nature 435, 374–379 (2005)). Monomeric structures are shown in yellow and green. Changes at position Tyr93 (red) are associated with resistance to NS5A inhibitors. NS5A is also shown in a 'closed' conformation (right, Protein Data Bank: 3FQM; Love, R. A. et al. J. Virol. 83, 4395–4403 (2009)). Götte, M. & Feld, J. J. (2016) Direct-acting antiviral agents for hepatitis C: structural and mechanistic insights Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2016.60