Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C

Slides:



Advertisements
Similar presentations
Fluid and Electrolyte Therapy. Introduction: The molecules of chemical compounds in solution may remain intact, or they may dissociate into particles.
Advertisements

Are neutral because the total positive charges of the cation equal the total negative charge of the anion.
Properties of Oilfield Waters Lectures # 30 – 31 PETE 310.
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Solubility Equilibrium TEXT REFERENCE Masterton and Hurley Chapter 16.1.
1 The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Environmental Engineering (ECIV 4324) Chapter 2 – Chemical Water Quality.
Percents and Solutions
Group-6.  An ion is an atom or group of atoms that have a net electrical charge. An ion is formed when electrons or protons are gained or lost by an.
Groundwater Quality UNIT 5.
Pharmacy math tutoring exam 6
Fluid and Electrolyte Therapy
Mass balance for the solubility of magnesium hydroxide (see page 153)
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Electrolyte Solutions: Milliequivalents, Millimoles, and Milliosmoles
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
WATER SOFTENING removal of hardness How is Softening done?...
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Topic-WATER SOFTENING Presented By- Amit Tiwari
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Bonding Basics 8th Grade Science.
Find: Daily Pumping Cost [$]
Concentrations of Solutions
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Fluid and Electrolyte Therapy
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
One Ca2+ ion: +2 One CO32- ion: -2
Find: STAC B C O A IAB R STAA= IAB=60
QQ: Complete the Boxes:
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Ionic Compounds.
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Equivalents and Milliequivalent
Presentation transcript:

Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C 90 120 147 340 Ca2+ 98 Ca2+ SO4 2- Mg2+ 22 Mg2+ Na+ 83 Na+ HCO3 - - HCO3 317 Find the concentration of magnesium sulfate, in milligrams per liter. [pause] In this problem, --- Cl- 2- SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C 90 120 147 340 Ca2+ 98 Ca2+ SO4 2- Mg2+ 22 Mg2+ Na+ 83 Na+ HCO3 - - HCO3 317 An aqueous solution with known concentrations of various ions, is provided. Cl- 2- SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C 90 120 147 340 Ca2+ 98 Ca2+ SO4 2- Mg2+ 22 Mg2+ Na+ 83 Na+ HCO3 - - HCO3 317 These ions would hypothetically join, and form compounds, based on the equivalent concentrations, of each ion. Cl- 2- SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C 90 120 147 340 Ca2+ 98 Ca2+ SO4 2- Mg2+ 22 Mg2+ Na+ 83 Na+ - - HCO3 HCO3 317 And magnesium sulfate is the compounds we want to calculate. [pause] We’ll solve this problem by creating a --- Cl- 2- SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L - Ion C Ca2+ 98 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Mg2+ 22 - Na+ 83 - HCO3 317 bar graph, based on the equivalent concentration of each cation, against the equivalent concentrations of each anion, from the solution. 2- meq L SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L - Ion C Ca2+ 98 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Mg2+ 22 - Na+ 83 - HCO3 317 The amount of magnesium sulfate which forms will depend on the amount of overlap, or shared concentration, between the magnesium ion and sulfate ion, as shown on the plot. 2- meq L SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L - Ion C Ca2+ 98 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Mg2+ 22 - Na+ 83 - HCO3 317 Therefore, we’ll first need to determine the equivalent concentrations of each ion, --- 2- meq L SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L - Ion C Ca2+ 98 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Mg2+ 22 - Na+ 83 - HCO3 317 and we’ll use the units of milliequivalent, per liter. [pause] Starting with the given concentrations --- 2- meq L SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L - Ion C Ca2+ 98 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Mg2+ 22 - Na+ 83 - HCO3 317 we’ll expand the table, to include columns for --- 2- meq L SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 Mg2+ 22 Na+ 83 - ionic mg*Z meq L Ion C Z C weight meq Ca2+ 98 Mg2+ 22 Na+ 83 the ionic weight of each ion, the absolute value --- - HCO3 317 2- SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 Mg2+ 22 Na+ 83 - ionic mg*Z meq L Ion C Z C weight meq Ca2+ 98 Mg2+ 22 Na+ 83 of the valence, z, and the calculated concentrations, --- - HCO3 317 2- SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 Mg2+ 22 Na+ 83 - ionic mg*Z meq Ion C Z C weight meq L Ca2+ 98 Mg2+ 22 Na+ 83 in milliequivalent per liter. [pause] For clarity, we’ll begin by identifying --- - HCO3 317 2- SO4 125 Cl- 89

Find: Mg S O4 mg (hypothetical) L 98 22 83 317 125 89 Ion Ca2+ Mg2+ ionic Ca2+ Mg2+ Na+ HCO3 - SO4 2- Cl- weight C mg*Z meq Z cations the cations, from the anions. Then, the ionic weights are looked up anions

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 cations Mg2+ ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 cations Mg2+ 22 24.3 Na+ 83 23.0 from a table of values, and inserted here. [pause] Next, the value of Z for each ion equals --- - HCO3 317 61.0 2- anions SO4 125 96.1 Cl- 89 35.5

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 cations Mg2+ ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 cations Mg2+ 22 24.3 Z=|Valence| Na+ 83 23.0 the absolute value of the valence, for each ion. So calcium, plus 2, --- - HCO3 317 61.0 2- anions SO4 125 96.1 Cl- 89 35.5

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 2 cations ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 2 cations Mg2+ 22 24.3 Z=|Valence| Na+ 83 23.0 has as Z value of 2, and Sodium, plus 1, ---- - HCO3 317 61.0 2- anions SO4 125 96.1 Cl- 89 35.5

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 2 cations ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 2 cations Mg2+ 22 24.3 Z=|Valence| Na+ 83 23.0 1 has as Z value of 1. The remaining Z values are entered. - HCO3 317 61.0 2- anions SO4 125 96.1 Cl- 89 35.5

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 2 cations ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 2 cations Mg2+ 22 24.3 2 Na+ 83 23.0 1 The milliequivalent per liter is calculated by multiplying --- - HCO3 317 61.0 1 2- anions SO4 125 96.1 2 Cl- 89 35.5 1

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 2 cations ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 2 cations Mg2+ 22 24.3 2 mg Na+ 83 23.0 1 C Z * meq L L The concentration, in milligrams per liter, by the Z variable, divided by the ionic weight. So for the calcium ion, this would be --- - HCO3 317 C 61.0 = 1 ionic mg*Z 2- anions SO4 125 96.1 2 weight meq Cl- 89 35.5 1

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 2 cations ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 2 cations Mg2+ 22 24.3 2 mg Na+ 83 23.0 1 98 2 * - meq L L 98 milligrams per liter times 2, divided by 40.1, milligrams per milliequivalent, the Z’s and milligrams cancel, and the concentration equals --- HCO3 317 C 61.0 = 1 mg*Z 2- anions 40.1 SO4 125 96.1 2 meq Cl- 89 35.5 1

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 2 4.89 ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 2 4.89 cations Mg2+ 22 24.3 2 mg Na+ 83 23.0 1 98 2 * - meq L L 4.89 milliequivalents per liter. [pause] The other ions are are calculated the same way. HCO3 317 C 61.0 = 1 mg*Z 2- anions 40.1 SO4 125 96.1 2 meq Cl- 89 35.5 1

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 2 4.89 ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 2 4.89 cations Mg2+ 22 24.3 2 1.81 Na+ 83 23.0 1 3.61 [pause] If we remove the middle 3 columns of the table, --- - HCO3 317 61.0 1 5.20 2- anions SO4 125 96.1 2 2.60 Cl- 89 35.5 1 2.51

Find: Mg S O4 mg (hypothetical) L Ion C Z C Ca2+ 98 40.1 2 4.89 ionic mg*Z meq meq L Ion C Z C weight Ca2+ 98 40.1 2 4.89 cations Mg2+ 22 24.3 2 1.81 Na+ 83 23.0 1 3.61 we’ll be are ready to construct the --- - HCO3 317 61.0 1 5.20 2- anions SO4 125 96.1 2 2.60 Cl- 89 35.5 1 2.51

Find: Mg S O4 mg (hypothetical) L Ion C Ca2+ 4.89 cations Mg2+ 1.81 meq L Ion C Ca2+ 4.89 cations Mg2+ 1.81 Na+ 3.61 milliequivalent per liter bar graph. - HCO3 5.20 2- anions SO4 2.60 Cl- 2.51

Find: Mg S O4 mg (hypothetical) L Ion C Ca2+ 4.89 cations Mg2+ 1.81 meq L Ion C Ca2+ 4.89 cations Mg2+ 1.81 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Na+ 3.61 With the cations, on top, in green, --- - HCO3 5.20 2- anions SO4 2.60 Cl- 2.51

Find: Mg S O4 mg (hypothetical) L Ion C Ca2+ 4.89 cations cations Mg2+ meq L Ion C Ca2+ 4.89 cations cations Mg2+ 1.81 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Na+ 3.61 and the anion, on bottom, in orange. The length of each ion represented on the graph, is based on --- - HCO3 5.20 2- anions SO4 2.60 anions Cl- 2.51

Find: Mg S O4 mg (hypothetical) L Ion C Ca2+ 4.89 cations Mg2+ 1.81 meq L Ion C Ca2+ 4.89 4.89 1.81 3.61 cations Mg2+ 1.81 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Na+ 3.61 its concentration in milliequivalents per liter. If the left end of the graph is zero, then --- - HCO3 5.20 2- anions SO4 2.60 5.20 2.60 2.51 Cl- 2.51

Find: Mg S O4 mg (hypothetical) L Ion C Ca2+ 4.89 cations Mg2+ 1.81 meq L Ion C meq L Ca2+ 4.89 4.89 6.70 10.31 cations Mg2+ 1.81 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Na+ 3.61 the milliequivalents per liter, between each ion, can be calculated. Since the question asks to find the hypothetical --- - HCO3 5.20 2- anions SO4 2.60 5.20 5.80 10.31 Cl- 2.51 meq L

Find: Mg S O4 mg (hypothetical) L Ion C Ca2+ 4.89 cations Mg2+ 1.81 meq L Ion C meq L Ca2+ 4.89 4.89 6.70 10.31 cations Mg2+ 1.81 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Na+ 3.61 formation of magnesium sulfate, we’ll focus on the overlap between the ions, --- - HCO3 5.20 2- anions SO4 2.60 5.20 5.80 10.31 Cl- 2.51 meq L

Find: Mg S O4 mg (hypothetical) L Ion C Ca2+ 4.89 cations Mg2+ 1.81 meq L Ion C meq L Ca2+ 4.89 4.89 6.70 10.31 cations Mg2+ 1.81 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Na+ 3.61 magnesium plus 2, and the sulfate minus 2. - HCO3 5.20 2- anions SO4 2.60 5.20 5.80 10.31 Cl- 2.51 meq L

Find: Mg S O4 mg (hypothetical) L MgSO4=6.70-5.20 Ion C Ca2+ 4.89 meq L Ion C meq 5.20 6.70 L Ca2+ 4.89 4.89 10.31 cations Mg2+ 1.81 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Na+ 3.61 6.70, milliquivalents per liter, minus, 5.20, milliequivalents per liter, equals, --- - HCO3 5.20 2- anions SO4 2.60 5.20 5.80 10.31 Cl- 2.51 meq L

Find: Mg S O4 mg (hypothetical) L MgSO4=6.70-5.20 Ion C MgSO4=1.50 meq L meq Ion C MgSO4=1.50 meq L 5.20 6.70 L Ca2+ 4.89 4.89 10.31 cations Mg2+ 1.81 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- Na+ 3.61 1.50 milliequivalents per liter. [pause] Since the problem asks for the concentration milligrams per liter, --- - HCO3 5.20 2- anions SO4 2.60 5.20 5.80 10.31 Cl- 2.51 meq L

Find: Mg S O4 mg (hypothetical) L MgSO4=6.70-5.20 Ion C MgSO4=1.50 meq L meq L mg meq Ion C MgSO4=1.50 * 60.2 Ca2+ 4.89 cations Mg2+ 1.81 4.89 6.70 10.31 Na+ 3.61 we’ll multiply by the equivalent weight of magnesium sulfate, 60.2, milligrams per milliequivalent, and the hyptothetical concentration of --- - HCO3 5.20 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- 2- anions SO4 2.60 Cl- 2.51 5.20 5.80 10.31

Find: Mg S O4 mg (hypothetical) L MgSO4=6.70-5.20 Ion C MgSO4=1.50 meq L meq mg Ion C MgSO4=1.50 * 60.2 meq L Ca2+ 4.89 mg MgSO4=90.3 L cations Mg2+ 1.81 4.89 6.70 10.31 Na+ 3.61 magnesium sulfate equals 90.3 milligrams per liter. - HCO3 5.20 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- 2- anions SO4 2.60 Cl- 2.51 5.20 5.80 10.31

Find: Mg S O4 mg (hypothetical) L MgSO4=6.70-5.20 Ion C MgSO4=1.50 meq L meq mg Ion C MgSO4=1.50 * 60.2 meq L Ca2+ 4.89 mg 90 120 147 340 MgSO4=90.3 L cations Mg2+ 1.81 4.89 6.70 10.31 Na+ 3.61 When reviewing the possible solutions, --- - HCO3 5.20 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- 2- anions SO4 2.60 Cl- 2.51 5.20 5.80 10.31

Find: Mg S O4 mg (hypothetical) L AnswerA MgSO4=6.70-5.20 Ion C meq L meq mg Ion C MgSO4=1.50 * 60.2 meq L Ca2+ 4.89 mg 90 120 147 340 MgSO4=90.3 L cations Mg2+ 1.81 AnswerA 10.31 Na+ 3.61 the answer is A. [pause] If the problem asked to find --- - HCO3 5.20 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- 2- anions SO4 2.60 Cl- 2.51 5.20 5.80 10.31

Find: Mg S O4 mg (hypothetical) L Hardenss? Ion C Ca2+ 4.89 cations meq L Ion C Ca2+ 4.89 cations Mg2+ 1.81 4.89 6.70 10.31 Na+ 3.61 the hardness of the solution, as calcium carbonate, then the method would be to calculate the combined equivalent concentration of all multivalent cations, --- - HCO3 5.20 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- 2- anions SO4 2.60 Cl- 2.51 5.20 5.80 10.31

Find: Mg S O4 mg (hypothetical) L Hardenss? Ion C Ca2+ 4.89 cations meq L Ion C Ca2+ 4.89 cations Mg2+ 1.81 4.89 6.70 10.31 Na+ 3.61 which for this solution would apply to Calcium and Magnesium, whose combined concentration is ---- - HCO3 5.20 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- 2- anions SO4 2.60 Cl- 2.51 5.20 5.80 10.31

Find: Mg S O4 mg (hypothetical) L Hardenss=6.70 Ion C Ca2+ 4.89 meq Hardenss=6.70 meq L L Ion C Ca2+ 4.89 cations Mg2+ 1.81 4.89 6.70 10.31 Na+ 3.61 6.70 milliequivalents per liter. To convert these units of calcium carbonate, ---- - HCO3 5.20 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- 2- anions SO4 2.60 Cl- 2.51 5.20 5.80 10.31

Find: Mg S O4 mg (hypothetical) L Hardenss=6.70 Ion C x 50.1 Ca2+ 4.89 meq Hardenss=6.70 meq L L Ion C mg equivalent x 50.1 weight meq Ca2+ 4.89 ofCaCO3 cations Mg2+ 1.81 4.89 6.70 10.31 Na+ 3.61 we’ll multiply by the equivalent weight of 50.1 milligrams per milliequivalent, and the hardness would equal, ---- - HCO3 5.20 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- 2- anions SO4 2.60 Cl- 2.51 5.20 5.80 10.31

Find: Mg S O4 mg (hypothetical) L Hardenss=6.70 Ion C x 50.1 Ca2+ 4.89 meq Hardenss=6.70 meq L L Ion C mg equivalent x 50.1 weight meq Ca2+ 4.89 CaCO3 335.7 [mg/L] cations Mg2+ 1.81 4.89 6.70 10.31 Na+ 3.61 335.7 milligrams per liter, as calcium carbonate. - HCO3 5.20 SO4 Ca2+ Mg2+ Na+ HCO3 2- Cl- 2- anions SO4 2.60 Cl- 2.51 5.20 5.80 10.31

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4