HBr Mass resolved REMPI and Imaging REMPI.

Slides:



Advertisements
Similar presentations
HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.
Advertisements

HCl,  =0, H 3 7Cl and H35Cl analysis. agust,www,.....Sept10/PPT aak.ppt agust,heima,...Sept10/XLS ak.xls agust,heima,...Sept10/Look for J ak.pxp.
HCl, dep. Calc. E0,V10,V11
Comparison of E(1), V(m+8), H(0) and V(m+7) VMI data: 1 color exp: KER spectra, 1color exp.……………………..…………..2-5 Beta2 vs J´,1 color exp.…………………………………….6-10.
Group IV presentation: Frímann, Helgi, Long & Nanna.
CH3Br, )“New” C atomic lines 2)Summary of C atomic line observations and “nonobservations” agust,heima,....Dec09/CH3BR-Overall (C) km agust,www,...Dec09/PPT aak.ppt.
CH3Br, Relative ion signals (I(M + )/I(CH 3 + )) vs Rydberg states agust,www,....Nov09/PPT ak.ppt agust,heima,...CH3Br-Overall +mass km ak.pxp.
CH2Br2: 1) Absorption 2) REMPI scans: overview (slides 12-15) 3) C+ REMPI vs absorption spectrum agust,www,....ch2br2/PPT ak.ppt agust,heima,...CH2Br2/PXP ak.pxp.
1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT ak.ppt agust,heima,....Jan11/XLS ak.xls.
Pnt I rel AK: ; agust,heima/rannsóknir/REMPI/HF/fra Wang/HF test skimmer pxp & HF t skimmer ppt Fig. 1.
cm CH 3 Br 10k 40k 70k CH 3 Br* C*( 1 D 2 )+H 2 +HBr C**( 1 D 2 )+H 2 +HBr J’’ k 150k C + +H 2 +HBr+e.
HBr, F1D2, v´=1
II. Multi- photon excitation / ionization processes
HBr: 1)Bond energies 2)Energetics 3)Summary of our published (3+n) REMPI of HBr 4)Possible Br (3+1)REMPI lines agust,www,....Jan11/PPT ak.ppt agust,heima,....Jan11/XLS ak.xls.
HBr, F 1  2, v´=1
CH3Br, HBr detection agust, www,...Sept09/PPT ak.ppt.
HBr: F 1  2 (v´=1) V(v´=m+7) interaction: W 12 determination from line shifts: agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state jlak.xls.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
CH 3 Br: & Literature survey on Direct ion-pair state excitation vs Ion pair fomation via initial Rydberg state excitation (Rydberg doorway.
HCl H+ signal near agust,heima,...januar09/V8_f3d2(alignment) vhw.pxp.
Things to address in our CH 3 Br studies / publication(s) Main reference is T. Ridley et al., JPC A, 112, 7170, (2008):
HBr agust,www,.....Jan11/PPT ak.ppt agust,heima,...Jan11/PXP ak.pxp agust,heima,...Jan11/HBr18820_ pxp.
CH 2 Br 2 agust,www,...rempi/ch2br2/PPT ak.ppt agust,heima,....CH2Br2/Long, Sept-11/Merged CH2Br2 spectra jl ak.pxp.
CF3Br agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp.
1 CH3Br, C, C* and C** dissociation formation channels vs C+ spectra Explanation for enhanced C+ Rydberg state spectra in the cm-1.
Agust,heima,...january09/PPT ak.ppt cm cm-1 F, v´= cm-1 Agust,heima,..january09/PXP ak.pxp.
HBr agust,www,....June11/PPT ak.ppt agust, heima,...June11/XLS ak.xls agust, heima,....June11/PXP ak.pxp 1) HBr absorption vs excitations.
1 CH3Br, agust, heima,....Sept09/XLS ak.xls agust, www,....Sept09/PPT ak.ppt agust,heima,....Sept09/C ion lines vhw.pxp.
Off-resonance interaction between E and V state of HCl and HBr Jingming Long 22/09/2011.
CH3Br agust,www,...Sept09/PPt ak.ppt agust,heima,....Sept09/CH3BR avhwak.pxp agust,heima,....Sept09/CH3BR bvhwak.pxp.
H35Cl, j(0+) intensity ratio analysis and comparison of experimental data agust,www,....Jan11/PPT ak.ppt agust,heima,...Jan11/Evaluation of coupling.
HBr, (updated ; slide 12) V(m+i) /HBr+(v+) spectra analysis
IAMS, Academia Sinica, Taiwan, 台灣 中研院原分所 Course: Molecular Spectroscopy Taiwan International Graduate Program (TIGP) Professor: Wen-Bih Tzeng, Lab: 108,
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
HI Relevant to the HI- Perturb.II paper:pages: H(2) ion intensities (system (b))………………………2-9
PUMP-PROBE MEASUREMENTS OF ROTATIONAL ENERGY TRANSFER RATES IN HBr + HBr COLLISIONS M. H. Kabir, I. O. Antonov, and M. C. Heaven Emory University Department.
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
Eirík´s project(?) CH3I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
HBr, E(0), KERs and relative intensities revisited: Content:pages: KER spectra and „channel.
PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,
TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG,
HCl, E(v´=2) agust,www,…..hcl/June11/PPT ak.ppt agust,heima,…HCl/June11/HCl E2 spectra jl.pxp agust,heima,…HCl/June11/HCl E2 spectra jlaka.pxp.
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
HBr Energetics agust,www,....hbr/PPT ak.ppt agust, heima,...HBr/XLS ak.xls.
HBr, angular distribution analysis E(0) Updated,
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3I VMI-REMPI data and analysis:
HBr, Angular distributions for V(m+i), i = 4-10; J´
Characterization of CHBrCl2 photolysis by velocity map imaging
Updated (p:15-16, refs. & p:50-51)
DCl (HCl) Heavy Rydberg states work Exploring V state spectra
Content: - Comparison of CH3 and CH2 KER - KER assignment for the two color experiment dissociation at 270 nm and probing of CH3 at nm (211 transition)
H(0), one-color, VMI and slicing images
HBr, 3S-, J´= 8 & V(m+9) Updated:
2 color VMI exp. CH3(X;v1v2v3v4) detection; hi
VMI-fitting results for V(m+i), i=4-10
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
CH3I summary This file includes some ideas about dissociation of
HBr 6pp.. vs. V(m+17) state interactions.
CH3I VMI-REMPI data and analysis:
1hv spectrum corrected/shifted
HI Absorption REMPI references (slide 9) Energetics (slides 10-)
CH3Br Negative particle detections; Electrons /PES:
HBr The cm-1 system (slides 2-16)
KER predictions for Br+ images
CF3Br agust,www,....cf3br/PPT ak.ppt agust,heima,....Sept10/XLS ak.xls
Perturbation analysis in REMPI Spectra of HCl and HBr
Presentation transcript:

HBr Mass resolved REMPI and Imaging REMPI

E H + X+ + e J+ v+ HX+ + e H + X** IE(HX) J´ v´ (2+1)REMPI: 2hn + HX ->-> HX**(v´,J´) 1hn + HX** -> HX+(v+,J+) HX** Rydb. H + Br/Br* HX J´´ v´´= 0 r(HX)

E H + X+ + e J+ v+ HX+ + e H + X** J´ v´ (2+2)REMPI: 2hn + HX ->-> H+X-(v´,J´) 2hn + H+X- -> H + X+ HX** v´,J´ Rydb. H+X-/Ion-pair/V H + Br/Br* HX J´´ v´´= 0 r(HX)

HCl, F1D2 Q Intensity J´=J´´ = 9 8 7 6 5 4 3 2 H35Cl+ 35Cl+ 2hn / cm-1

e- HX REMPI: HX+ X+ H X ** H+--X- HX Energy IE limit J´ J´ v´ v´ r(H-X)

E Interactions ? State

E Interactions ? State (1) / y0 (2) / y0 c1y0 y c2y0 c1´y0 c2´y0 c1 c2 Fraction Rydb. Fraction ion-pair c1y0 1 y a c2y0 2 = + b c1´y0 c2´y0 - c1 c2 = 1

E Interaction W12: strength (1) / y0 (2) / y0 y c1y0 c2y0 c1 c2 y Fraction Rydb. Fraction ion-pair 1 2 2 2 y c1y0 c2y0 c1 c2 + + = 1 = a 1 2 y c1´y0 c2´y0 - = b 1 2

E( ) E(J´) E (1) / y0 (2) / y0 y c1y0 c2y0 c1 c2 y c1´y0 c2´y0 DE Fraction Rydb. 1 2 Fraction ion-pair 2 2 y c1y0 c2y0 c1 c2 + + = 1 = a 1 2 y c1´y0 c2´y0 - = b 1 2

I.e. Mixing (c12 and c22) J´ dependent: HCl: V1S F1D2 x

HX+ X+ E( ) E(J´) E (1) / y0 (2) / y0 y c1y0 c2y0 c1 c2 y c1´y0 c2´y0 Fraction Rydb. 1 2 Fraction ion-pair 2 2 y c1y0 c2y0 c1 c2 + + = 1 = a 1 2 y c1´y0 c2´y0 - = b 1 2

F, v´=1 X, v´=0 H35Cl H37Cl I(Cl+)/I(HCl+) J´

Q HCl, F1D2 Com- press- ion E x p a n s i o n Intensity J´=J´´ = 9 8 7 6 5 4 3 2 H35Cl+ 35Cl+ 2hn / cm-1

DE

Above: Weak „near-resonance“ state interaction (W12 small) Below: Strong „off-resonance interaction“

H79Br

E H + X+ + e J+ v+ HX+ + e H + X** J´ v´= v´=m+5 v´=m+4 HX** E H+X- /Ion-pair/V H + Br/Br* HX J´´ v´´= 0 r(HX)

E H + X+ + e J+ v+ HX+ + e H + X** J´ v´= v´=m+5 v´=m+4 HX** E H+X- /Ion-pair/V H + Br/Br* HX J´´ v´´= 0 r(HX)

H79Br V 1S(0+) J´=9 W´=0 W´=0 J´=6 v´=m+5 Off resonance J´=0 J´=6 E/cm-1 J´=6 J´=0 E 1S(0+), v´=0 J´=0

E(0) Exp: Calc:

H79Br V 1S(0+) J´=9 J´=6 v´=m+5 J´=0 J´=6 J´=9 v´=m+4 E/cm-1 J´=6 J´=0 E 1S(0+), v´=0 J´=0

Imaging experiments in Crete:

Suggestions for experiments: -relevant to our studies (see above): Studies relevant to strong state interactions vs. J´ (http://jcp.aip.org/resource/1/jcpsa6/v138/i4/p044308_s1?isAuthorized=no /JCP; 2013) (or https://notendur.hi.is/~agust/rannsoknir/papers/jcp138-044308-13.pdf) Record ion images (H+, Br+, HBr+ (?)) vs J´ for two-photon, one-color resonance excitations to J´ levels of The Rydberg state E(v´=0); For Q lines, J´=0, 2, ..8, 9(?) The Ion-pair state V(v´=m+5); For Q lines, J´=0, 2, ..8, 9(?) The Ion-pair state V(v´= m+4); For Q lines, J´=0, 2, ..8, 9(?) (excitation range: 77520 – 78450 cm-1/9.61-9.73 eV; photons: 258.00-254.94 nm; see lines: https://notendur.hi.is/~agust/rannsoknir/papers/jcp93-4624-90.pdf and/or https://notendur.hi.is/~agust/rannsoknir/papers/HBr/jms90-152-81.pdf) :

2) Studies relevant to i) weak resonance state interactions and ii) strong interactions vs. J´ (http://jcp.aip.org/resource/1/jcpsa6/v136/i21/p214315_s1?isAuthorized=no /JCP, 2012) (or https://notendur.hi.is/agust/rannsoknir/papers/HBr/jcp136-214315-12.pdf ) Record ion images (H+, Br+, HBr+ (?)) vs J´ for two-photon one color resonance excitations to J´ levels of a) The Rydberg state F(v´=1); Q lines, J´=3, 4,5,6,7 (i) b) The Rydberg state E(v´=1); Q lines, J´= 0,1,….7(?) (ii) c) The Rydberg state H(v´=0), Q lines, J´= 0,1,….9(?) (ii) d) The Ion-pair state V(v´=m+7), Q lines, J´= 0,1, ..(5),..9 (i and ii) e) The Ion-pair state V(v´=m+8), Q lines, J´= 0,1,…7 (ii) (excitation range 79040-80300 cm-1/9.80 – 9.96 eV; photons: 253.04-249.07 nm; see lines: http://jcp.aip.org/resource/1/jcpsa6/v136/i21/p214315_s1?isAuthorized=no and/or https://notendur.hi.is/~agust/rannsoknir/papers/jcp93-4624-90.pdf and/or https://notendur.hi.is/~agust/rannsoknir/papers/HBr/jms90-152-81.pdf)

H+ Br+ and Br+ from Br resonances Br- (<= H+ + Br-)

How are the H+ ´s formed?

H+ + Br(3/2) [22P] 1S0,3P0 [ B2S ].. H* + Br*(1/2) H* + Br (3/2) H+ + Br- [ 4P,5s ] 3P0 H + Br**(5s) V/Ion-pair Ry

H+ + Br (3/2)/Br*(1/2) [22P].. [ B2S ].. HBr+(v+)(3/2,1/2) H* + Br*(1/2) H* + Br (3/2) H+ + Br - H + Br**(5s) [ 4P,5s ] 3P0 V/Ion-pair Ry

H+ + Br*(1/2) [22P] 1S0,3P0 [ B2S ].. H* + Br*(1/2) H* + Br (3/2) H+ + Br- H + Br**(5s) [ 4P,5s ] 3P0 V/Ion-pair Ry

HBr+(A2S+) HBr*** [A2S+].. HBr+(X2P) H+ + Br- V/Ion-pair Ry

In summary (?): H+ + Br- ….via HBr***/H+Br- (2+1) hn ….via HBr+(v+) (2+2) hn ….via H* + Br/Br* (2+2) hn H+ + Br (3/2)/Br*(1/2) H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) V/Ion-pair Ry

Imaging experiments / data

HBr, E(v´=0), J´= 1 J´= 1,2,…….

J´= 10(?) 9 8 7 6 5 4 3 2 1 KER/eV

Signal predictions

H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) ….via H* + Br/Br* (2+2) hn

H+ + Br*(1/2) E H+ + Br (3/2) H + Br+ + e KER(3/2) KER(1/2) HBr+ + e H* + Br*(1/2) H* + Br (3/2) H + Br** SO(Br*) HBr** 3hn E(H*) H+Br- H + Br D0(HBr) HBr E(J´´) E(J´´)+3hn = D0(HBr) +E(H*)+KER(3/2) => KER(3/2)=3hn + E(J´´)–D0(HBr)-E(H*) E(J´´)+3hn = D0(HBr) +E(H*)+KER(3/2) + SO(Br*) => KER(1/2)=3hn + E(J´´)–D0(HBr)-E(H*)-SO(Br*)

H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) ….via H* + Br/Br* (2+2) hn KER(3/2)=3hn + E(J´´)–D0(HBr)-E(H*) KER(1/2)=3hn + E(J´´)–D0(HBr)-E(H*)-SO(Br*) E(J´´) = B´´(J´´(J´´+ 1)) – D´´J´´2(J´´+ 1)2 H+ + Br- ….via HBr***/H+Br- (2+1) hn KER= 3hn + E(J´´) – D0(HBr) - IE(H) + EA(Br)

HBr, E(0): H+ + Br(3/2) J´= 10 9 8 7 6 5 4 3 2 1 Predicted KER´s For H+ + Br- H+ + Br(1/2) KER/eV KER/eV

H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) ….via H* + Br/Br* (2+2) hn KER(3/2)=3hn + E(J´´)–D0(HBr)-E(H*) KER(1/2)=3hn + E(J´´)–D0(HBr)-E(H*)-SO(Br*) E(J´´) = B´´(J´´(J´´+ 1)) – D´´J´´2(J´´+ 1)2 H+ + Br- ….via HBr***/H+Br- (2+1) hn KER= 3hn + E(J´´) – D0(HBr) - IE(H) + EA(Br) H+ + Br (3/2)/Br*(1/2) ….via HBr+(3/2,v+)/HBr+(1/2,v+) (2+2) hn KER(3/2<- 3/2)= hn + IE(HBr+ (3/2)) + G0(HBr+ (3/2),v+) –D0(HBr) - IE(H) KER(1/2<- 3/2)= hn + IE(HBr+ (3/2)) + G0(HBr+ (3/2),v+) –D0(HBr) - IE(H)-SO(Br*) KER(3/2<- 1/2)= hn + IE(HBr+ (1/2)) + G0(HBr+ (1/2),v+) –D0(HBr) - IE(H) KER(1/2<- 1/2)= hn + IE(HBr+ (1/2)) + G0(HBr+ (1/2),v+) –D0(HBr) - IE(H)-SO(Br*) G0 (HBr+) = we(v++1/2) – wexe (v++1/2)2+weye (v++1/2)3 -(we(1/2) – wexe (1/2)2+weye (1/2)3)

HBr, E(0): H+ + Br(3/2) H+ + Br(1/2) H+ + Br (3/2)/Br*(1/2) <- HBr+(3/2,v+)/HBr+*(1/2,v+) KER/eV Negligible shift of peaks

<- HBr+(3/2,v+)/HBr+*(1/2,v+) HBr, E(0), J´=1: H+ + Br(3/2) H+ + Br (3/2)/Br*(1/2) H+ + Br(1/2) <- HBr+(3/2,v+)/HBr+*(1/2,v+) Br/Br* HBr+/HBr+* ½ <- ½ 3/2 <- ½ ½ <- 3/2 3/2 <- 3/2 v+= 9 10 11 12 13 14 v+= 6 7 8 9 10 11 v+= 9 10 11 12 13 14 v+= 8 9 10 11 12 13 KER/eV Agust,lab top,C:/…/E0-KER-131124a.pxp

H+ + Br- ….via HBr***/H+Br- (2+1) hn ….via HBr+(v+) (2+2) hn ….via H* + Br/Br* (2+2) hn H+ + Br (3/2)/Br*(1/2) H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) V/Ion-pair Ry Signal of Channel via Ion-pair Signal of Channel via Rydberg vs. J´ measure of Rydberg-Ion-pair interactions vs. J´

<- HBr+(3/2,v+)/HBr+*(1/2,v+) HBr, E(0): H+ + Br(3/2) H+ + Br (3/2)/Br*(1/2) H+ + Br(1/2) <- HBr+(3/2,v+)/HBr+*(1/2,v+) Br/Br* HBr+/HBr+* ½ <- ½ 3/2 <- ½ ½ <- 3/2 3/2 <- 3/2 v+= 9 10 11 12 13 14 v+= 6 7 8 9 10 11 v+= 9 10 11 12 13 14 v+= 8 9 10 11 12 13 KER/eV Agust,lab top,C:/…/E0-KER-131124b.pxp (Gr1, Lay0)

H+ + Br*(1/2, 3/2)<- H* + Br/Br* J´ Agust,lab top,C:/…/E0-KER-131124c.pxp (Gr1, Lay0)

H+ + Br (3/2)/Br*(1/2)<- HBr+(v+) H+ + Br(3/2,1/2)<- H* + Br/Br* J´ Agust,lab top,C:/…/E0-KER-131124c.pxp (Gr1, Lay0)

Ion-pair states V(m+4) and V(m+5) spectra:

<- HBr+(3/2,v+)/HBr+*(1/2,v+) J´= 1 H+ + Br(3/2) H+ + Br(1/2) H+ + Br (3/2)/Br*(1/2) <- HBr+(3/2,v+)/HBr+*(1/2,v+) V(m+5) Br/Br* HBr+/HBr+* ½ <- ½ 3/2 <- ½ ½ <- 3/2 3/2 <- 3/2 v+= 10 11 12 13 v+= 9 10 E(0) V(m+4) KER/eV Agust,lab top,C:/…/E0-KER-131125.pxp (Gr2, Lay3)

H+ + Br*(1/2, 3/2)<- H* + Br/Br* V(m+5) J´= 0 1 2 3 V(m+4) J´= 012 3 4 5 6 7 8 E(0) J´= 1 2 3 4 5 6 7 8 9 2hn/cm-1 Agust,lab top,C:/…/E0-KER-131124d.pxp (Gr3, Lay3)

H+ + Br*(1/2, 3/2)<- H* + Br/Br* Larger for the V states than E(0) H+ + Br(3/2,1/2)<- H* + Br/Br*

H+ + Br*(1/2, 3/2)<- H* + Br/Br* V(m+5) J´= 0 1 2 3 V(m+4) J´= 012 3 4 5 6 7 8 E(0) J´= 1 2 3 4 5 6 7 8 9 2hn/cm-1 Agust,lab top,C:/…/E0-KER-131124d.pxp (Gr3, Lay3)

H+ angular distributions:

H++Br(3/2) H++Br(1/2) H++Br(1/2) || || || (^) H++Br(3/2) ^ ^ ^ H++Br(1/2) ^ ^ ^ H++Br(3/2) ^ , || ^ , || ^ , ||

H++Br(3/2) H++Br(1/2) H++Br(1/2) ^ ^ ^ H++Br(3/2) ^ , || || || J´ 1 2 3 4 5 6 7 8 9 H++Br(1/2) || ||, ^ ^ H++Br(3/2) ^,||

H+ + Br(3/2) [22P] 1S0,3P0 [ B2S ].. H* + Br*(1/2) H* + Br (3/2) H+ + Br- [ 4P,5s ] 3P0 H + Br**(5s) V/1S+ E1S+

H+ + Br*(1/2) [22P] 1S0,3P0 [ B2S ].. H* + Br*(1/2) H* + Br (3/2) H+ + Br- H + Br**(5s) [ 4P,5s ] 3P0 V/1S+ E1S+

Br+ images HBr Molecular resonances Br atom resonances

HBr Molecular resonances H + X+ + e J+ v+ HX+ + e 3hn: X+ <- H + X** 2hn: X+ <-<-<- H+ Br/Br* 1hn: X+ <-<-<- H+ Br/Br* KER´s H + X** J´ v´ HX** v´,J´ H+X- /Ion-pair/V H + Br/Br* HX J´´ v´´= 0 r(HX)

HBr, E(0); Br+ KER´s 1hn 2hn 3hn „blob“! Max: KER(81Br) eV 0,035197 0,03524 0,035307 0,035396 0,035509 0,035644 0,035801 0,03598 0,036177 0,036403 81Br KER KER(Br(3/2)) KER(Br(1/2)) eV 0,013269482 0,007697388 0,013317537 0,007745443 0,013390194 0,0078181 0,013487191 0,007915097 0,013608705 0,008036612 0,013754375 0,008182282 0,01392428 0,008352186 0,014117805 0,008545711 0,014334023 0,00876193 0,014576229 0,009004135 81Br KER KER(Br(3/2)) KER(Br(1/2)) eV 0,072191331 0,066619237 0,072236967 0,066664873 0,0723066 0,066734506 0,072399741 0,066827647 0,072516795 0,066944701 0,072657098 0,067085004 0,072820878 0,067248785 0,073006995 0,067434901 0,073213688 0,067641594 0,073447652 0,067875558 J´ 1 2 3 4 5 6 7 8 9 10 „blob“!

Br atom resonances E X+ + e X** X/X* Only „1hn channel“ observed H + X+ + e J+ v+ HX+ + e H + X** J´ v´ HX** v´,J´ H+X- /Ion-pair/V H + X/X* HX J´´ v´´= 0 r(HX)

HBr „near-resonance“ interactions: Exp. 3 & 4 (?):

Alternative HBr experiments(3 & 4): 3) „near-resonance“ interaction: k3P1(v´= 0) (k(0)) and V(m+9) for J´= 7 Ref: https://notendur.hi.is/~agust/rannsoknir/papers/HBr/jms282-20-12.pdf :

3) „near-resonance“ interaction: k3P1(v´= 0) (k(0)) and V(m+9) for J´= 7 Ref: https://notendur.hi.is/~agust/rannsoknir/papers/HBr/jms282-20-12.pdf :

4) „near-resonance“ interaction: 6pp3S-(v´= 0) and V(m+17) for J´= 7,8,9 Ref: https://notendur.hi.is/~agust/rannsoknir/papers/HBr/jms282-20-12.pdf : O Q S

4) „near-resonance“ interaction: 6pp3S-(v´= 0) and V(m+17) for J´= 7,8,9 Ref: https://notendur.hi.is/~agust/rannsoknir/papers/HBr/jms282-20-12.pdf :

4) „near-resonance“ interaction: 6pp3S-(v´= 0) and V(m+17) for J´= 7,8,9 Ref: https://notendur.hi.is/~agust/rannsoknir/papers/HBr/jms282-20-12.pdf :

4) „near-resonance“ interaction: 6pp3S-(v´= 0) and V(m+17) for J´= 7,8,9 Ref: https://notendur.hi.is/~agust/rannsoknir/papers/HBr/jms282-20-12.pdf :