Section 2-3 Using Measurements

Slides:



Advertisements
Similar presentations
CH. 2 - MEASUREMENT Units of Measurement.
Advertisements

Chapter 3 Measurement Accuracy vs Precision Percent Error
Chapter 2 – Scientific Measurement
SECTION 2-3. Objectives 1. Distinguish between accuracy and precision 2. Determine the number of significant figures in measurements 3. Perform mathematical.
Measurements: Every measurement has UNITS.
I. Scientific Method. The Scientific Method A logical approach to solving problems or answering questions. Starts with observation- noting and recording.
Chapter 2: Measurement and Calculations… Section 2-1: Scientific Method (pg29-31) will not be explicitly covered but used throughout this entire class…
Scientific Notation Converting into Sci. Notation: –Move decimal until there’s 1 digit to its left. Places moved = exponent. –Large # (>1)  positive.
I II III I. Using Measurements CH. 2 - MEASUREMENT.
Unit 2. Measurement This lesson is 8 days long.
C. What are Significant Figures The places in the numbers that are important. They tell you how precise a measurement is. The places in the numbers that.
I II III I. Using Measurements CH. 2 - MEASUREMENT.
Homework: Due Friday 9/4 Do 1-10 on a separate sheet of paper, include units. Do all problems on slide 25 as well.
I. Using Measurements (p )
Significant Figures What do you write?
Chapter 2: Measurement and Calculations… Section 2-1: Scientific Method (pg29-31) will not be explicitly covered but used throughout this entire class…
I II III I. Using Measurements CH. 2 - MEASUREMENT.
Significant Figures and Scientific Notations Examples and Problems.
CH. 1 - MEASUREMENT I. Units of Measurement. Scientific Method.
I. Using Measurements MEASUREMENT IN SCIENCE. A. Accuracy vs. Precision Accuracy - how close a measurement is to the accepted value Precision - how close.
Ch. 3, Scientific Measurement. Measurement Measurement: A quantity that has a number and a unit. Like 52 meters.
I II III I. Using Measurements MEASUREMENT. A. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how.
I. Using Measurements (p )
I II III I. Using Measurements (p. 8-15) CH MEASUREMENT.
Uncertainty in measurement  Every measurement has error associated with it.  The more precise the measurement the less error.  Error in a measurement.
Chapter 2 - Section 3 Suggested Reading Pages Using Scientific Measurements.
Units of Measure & Conversions. Number vs. Quantity  Quantity - number + unit UNITS MATTER!!
I II III I. Using Measurements MEASUREMENT. A. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how.
Accuracy & Precision & Significant Digits. Accuracy & Precision What’s difference? Accuracy – The closeness of the average of a set of measurements to.
I II III Using Measurements MEASUREMENT. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how close.
Scientific Notation and Significant Figures A. Accuracy vs. Precision Accuracy - how close a measurement is to the accepted value Precision - how close.
I II III III. Using Measurements (p ) CH. 2 - MEASUREMENT.
Measurements and Calculations Scientific Method Units of Measurement Using Scientific Measurements.
CH. 2 - MEASUREMENT. Observing and Collecting Data Data may be Qualitative (descriptive) Flower is red Quantitative (numerical) 100 flowers.
I. Using Measurements (p )
Course Outline Math Review Measurement Using Measurements.
Significant Figures How to work with lab data, and correctly round calculated values.
I II III Welcome to Chemistry 116!.  Work to be turned in will only be accepted during the first 10 minutes of lab, or will be considered late  Work.
I. Using Measurements (p )
III. Using Measurements (p )
Measurement.
CH. 2 - MEASUREMENT I. Using Measurements.
CH. 1 - MEASUREMENT I. Units of Measurement.
Measurement Accuracy vs Precision Percent Error Significant Figures
Unit 2- Measurements- Significant Figures & Scientific Notation
I. Using Measurements (p )
Measurement Accuracy vs Precision SI Units Dimensional Analysis
CH. 2 - MEASUREMENT.
-Accuracy & Precision - Significant Digits -Scientific Notation
Lesson 2 – Sci. Notation, Accuracy, and Significant Figures
MEASUREMENT I. Units of Measurement.
Section 3-2 Uncertainty in Measurements
Significant Figures Describing Scientific Measurements Density
Dimensional Analysis.
Dimensional Analysis, Significant Figures, & the Metric System
Section 2.3 Uncertainty in Data
MEASUREMENT Using Measurements.
I. Using Measurements (p )
CH. 2 - MEASUREMENT I. Using Measurements.
CH. 2 - MEASUREMENT I. Using Measurements.
MEASUREMENT Using Measurements C. Johannesson.
CH. 1- MEASUREMENT II. Using Measurements.
Accuracy vs. Precision & Significant Figures
Lesson 2 – Sci. Notation, Accuracy, and Significant Figures
CH. 2 - MEASUREMENT I. Using Measurements.
I. Using Measurements (p )
Scientific Measurements
Using Scientific Measurements
I. Using Measurements (pp )
2.3 Using Scientific Measurements
Presentation transcript:

Section 2-3 Using Measurements CH. 2 - MEASUREMENT Section 2-3 Using Measurements

A. Accuracy vs. Precision Accuracy - how close a measurement is to the accepted value Precision - how close a series of measurements are to each other ACCURATE = CORRECT PRECISE = CONSISTENT

B. Percent Error Indicates accuracy of a measurement your value accepted value

B. Percent Error % error = 2.9 % A student determines the density of a substance to be 1.40 g/mL. Find the % error if the accepted value of the density is 1.36 g/mL. % error = 2.9 %

C. Significant Figures Indicate precision of a measurement. Recording Sig Figs Sig figs in a measurement include the known digits plus a final estimated digit 2.35 cm

C. Significant Figures Counting Sig Figs (Table 2-5, p.47) Count all numbers EXCEPT: Leading zeros -- 0.0025 Trailing zeros without a decimal point -- 2,500

Counting Sig Fig Examples C. Significant Figures Counting Sig Fig Examples 1. 23.50 1. 23.50 4 sig figs 2. 402 2. 402 3 sig figs 3. 5,280 3. 5,280 3 sig figs 4. 0.080 4. 0.080 2 sig figs

C. Significant Figures Rounding Rules If the digit following the last digit to be retained is: Then the last digit should: Greater than 5 Be increased by 1 Less than 5 Stay the same 5, followed by nonzero digit(s) 5, not followed by nonzero digit(s), and preceded by an odd digit 5, not followed by nonzero digit(s), and the preceding significant digit is even

C. Significant Figures Rounding Rules Practice – Round each example to three significant figures. 1. 42.68 g = 2. 17.32 m = 3. 2.7851 cm = 4. 78.65 cm =

C. Significant Figures (13.91g/cm3)(23.3cm3) = 324.103g 324 g Calculating with Sig Figs Multiply/Divide - The # with the fewest sig figs determines the # of sig figs in the answer. (13.91g/cm3)(23.3cm3) = 324.103g 4 SF 3 SF 3 SF 324 g

C. Significant Figures 3.75 mL + 4.1 mL 7.85 mL 3.75 mL + 4.1 mL Calculating with Sig Figs (con’t) Add/Subtract - The # with the lowest decimal value determines the place of the last sig fig in the answer. 3.75 mL + 4.1 mL 7.85 mL 3.75 mL + 4.1 mL 7.85 mL 224 g + 130 g 354 g 224 g + 130 g 354 g  7.9 mL  350 g

C. Significant Figures Calculating with Sig Figs (con’t) Exact Numbers do not limit the # of sig figs in the answer. Counting numbers: 12 students Exact conversions: 1 m = 100 cm “1” in any conversion: 1 in = 2.54 cm

C. Significant Figures Practice Problems 5. (15.30 g) ÷ (6.4 mL) 4 SF 2 SF = 2.390625 g/mL  2.4 g/mL 2 SF 6. 18.9 g - 0.84 g  18.1 g 18.06 g

D. Scientific Notation 65,000 kg  6.5 × 104 kg Converting into Sci. Notation: Move decimal until there’s 1 digit to its left. Places moved = exponent. Large # (>1)  positive exponent Small # (<1)  negative exponent Only include sig figs.

D. Scientific Notation Practice Problems 7. 2,400,000 g 8. 0.00256 kg 9. 7  10-5 km 10. 6.2  104 mm 2.4  106 g 2.56  10-3 kg 0.00007 km 62,000 mm

E. Proportions Direct Proportion y x Inverse Proportion y x