Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution arXiv: 1306.6134 Zhiyuan Tang, Zhongfa Liao,

Slides:



Advertisements
Similar presentations
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisements

Kapitel S3 Astronomie Autor: Bennett et al. Raumzeit und Gravitation Kapitel S3 Raumzeit und Gravitation © Pearson Studium 2010 Folie: 1.
Kapitel 21 Astronomie Autor: Bennett et al. Galaxienentwicklung Kapitel 21 Galaxienentwicklung © Pearson Studium 2010 Folie: 1.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
STATISTICS Sampling and Sampling Distributions
Quantum Cryptography Post Tenebras Lux!
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
Quantum Cryptography Nick Papanikolaou Third Year CSE Student
ZMQS ZMQS
Trusted Data Sharing over Untrusted Cloud Storage Provider Gansen Zhao, Chunming Rong, Jin Li, Feng Zhang, and Yong Tang Cloud Computing Technology and.
QCRYPT 2011, Zurich, September 2011 Lluis Masanes 1, Stefano Pironio 2 and Antonio Acín 1,3 1 ICFO-Institut de Ciencies Fotoniques, Barcelona 2 Université.
ABC Technology Project
Countering DoS Attacks with Stateless Multipath Overlays Presented by Yan Zhang.
Squares and Square Root WALK. Solve each problem REVIEW:
1 Decoy State Quantum Key Distribution (QKD) Hoi-Kwong Lo Center for Quantum Information and Quantum Control Dept. of Electrical & Comp. Engineering (ECE);
© 2012 National Heart Foundation of Australia. Slide 2.
Chapter 5 Test Review Sections 5-1 through 5-4.
Addition 1’s to 20.
25 seconds left…...
Week 1.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Intracellular Compartments and Transport
A SMALL TRUTH TO MAKE LIFE 100%
1 Unit 1 Kinematics Chapter 1 Day
PSSA Preparation.
VPN AND REMOTE ACCESS Mohammad S. Hasan 1 VPN and Remote Access.
Essential Cell Biology
How Cells Obtain Energy from Food
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Implementation of Practically Secure Quantum Bit Commitment Protocol Ariel Danan School of Physics Tel Aviv University September 2008.
Trojan-horse attacks on practical continuous-variable quantum key distribution systems Imran Khan, Nitin Jain, Birgit Stiller, Paul Jouguet, Sébastien.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
1 Decoy State Quantum Key Distribution (QKD) Hoi-Kwong Lo Center for Quantum Information and Quantum Control Dept. of Electrical & Comp. Engineering (ECE);
Quantum Cryptography Ranveer Raaj Joyseeree & Andreas Fognini Alice Bob Eve.
Quantum Key Distribution Yet another method of generating a key.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Quantum Cryptography December, 3 rd 2007 Philippe LABOUCHERE Annika BEHRENS.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Two vertical-cavity surface-emitting lasers (VCSEL’s) are used at Alice, as sources of the two encoded states. Both outputs are then attenuated to achieve.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Security of practical quantum cryptography with heralded single photon sources Mikołaj Lasota 1, Rafał Demkowicz-Dobrzański 2, Konrad Banaszek 2 1 Nicolaus.
1 candidate: Vadim Makarov Quantum cryptography and quantum cryptanalysis Defence for the degree doktor ingeniør at the Norwegian University of Science.
Device-independent security in quantum key distribution Lluis Masanes ICFO-The Institute of Photonic Sciences arXiv:
Trondheim 2003 NTNU Vadim Makarov Lecture in "Fiberkomponenter" course, November 13, 2003 Quantum Cryptography Kvantekryptering.
1 A Randomized Space-Time Transmission Scheme for Secret-Key Agreement Xiaohua (Edward) Li 1, Mo Chen 1 and E. Paul Ratazzi 2 1 Department of Electrical.
IIS 2004, CroatiaSeptember 22, 2004 Quantum Cryptography and Security of Information Systems 1 2
Quantum Cryptography Zelam Ngo, David McGrogan. Motivation Age of Information Information is valuable Protecting that Information.
Trondheim 2002 NTNU Quantum Cryptography FoU NTNU Vadim Makarov and Dag R. Hjelme Institutt for fysikalsk elektronikk NTNU Norsk kryptoseminar,
Quantum Key Distribution Chances and Restrictions Norbert Lütkenhaus Emmy Noether Research Group Institut für Theoretische Physik I Universität Erlangen-Nürnberg.
Quantum Dense coding and Quantum Teleportation
CS555Topic 251 Cryptography CS 555 Topic 25: Quantum Crpytography.
1 Security of Quantum Key Distribution with Imperfect Devices Hoi-Kwong Lo Dept. of Electrical & Comp. Engineering (ECE); & Dept. of Physics University.
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
Quantum Cryptography Antonio Acín
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Secret keys and random numbers from quantum non locality Serge Massar.
Quantum hacking - experimental demonstration of time-shift attack against a practical quantum crypto-system Yi Zhao Dept. of Physics Center for Quantum.
Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki * *Perimeter Institute for.
Seung Hwan An University of Washington October 18, 2016 PHYS 494
Quantum Information with Continuous Variables
Presentation transcript:

Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution arXiv: 1306.6134 Zhiyuan Tang, Zhongfa Liao, Feihu Xu, Bing Qi, Li Qian, and Hoi-Kwong Lo Centre of Quantum Information and Quantum Control Department of Electrical and Computer Engineering and Department of Physics University of Toronto ztang@physics.utoronto.ca Qcrypt 2013 Waterloo, Ontario, Canada August 8, 2013

Outline Security of Practical QKD Systems Quantum hacking and counter measures Measurement-Device-Independent QKD (MDI-QKD) Our Experiment Future outlook

In theory , QKD is secure… Eve ALICE Bob ? ? ? ? ? ? ? Quantum Channel Single photon source Perfect single photon detector

In practice … Eve ALICE Bob Quantum Channel Coherent source 01100101… Attack source Attack detectors Quantum Channel Coherent source Imperfect single photon detector

Quantum hacking

Quantum hacking Photon number splitting attack Brassard et al., Phys. Rev. Lett. 85 1330 (2000). Phase remapping attack Fung et al., Phys. Rev. a 78, 042333 (2007); Xu et al., New J. Phys. 12, 113026 (2010). Time-shift attack Qi et al., Quant. Inf. Comput. 7, 073 (2007); Zhao et al., Phys. Rev. A 78, 042333 (2008). Bright illumination attack Markarov, New J. Phys. 12, 113026 (2009); Lydersen et al., Nat. Photon. 4, 686 (2010); Lydersen et al., Opt. Express 18, 27938 (2010); Lydersen et al., Phys. Rev. A 84, 032320 (2011); Wiechers et al., New. J. Phys. 13, 013043 (2011). Device calibration attack Jain et al., Phys. Rev. Lett. 197, 110501 (2011). Attack by exploiting the dead time of SPD Weier et al., New. J. Phys. 13, 073024 (2011). Attacks on sources Photon detectors have turned out to be an Achilles’ heel for quantum key distribution (QKD), inadvertently opening the door to subtle side-channel attacks… - Charles Bennett Attacks on detectors

Counter measures Better models to understand imperfections in practical QKD systems e.g., T.F. da Silva et al., Opt. Express 20, 18911 (2012). Hard to close all the security loopholes Teleportation tricks Lo and Chau, Science 283 2050 (1999). Bob teleports incoming signal from outside to himself still challenging today Device-Independent QKD Based on loophole-free Bell test Requires detectors with near-unity quantum efficiency Low key generation rate (~10-10 per pulse) Mayers and Yao, FOCS 1998; Acin et al., Phys. Rev. Lett. 98, 230501 (2007); Gisin et al., Phys. Rev. Lett. 105, 070501 (2010).

Is there a PRACTICAL solution to quantum hacking today?

Measurement-Device-Independent QKD (MDI-QKD) Built on time-reversed entanglement QKD Biham et al., Phys. Rev. A 54, 2651 (1996); Inamori, Algorithmica 34, 340 (2002). Bell state measurement (BSM) by an untrusted third party All detector side channels are removed Assumption: sources are trusted Finite basis dependent flaws can be tolerated Tamaki et al., Phys. Rev. A 85, 042307 (2012) Lo, Curty, and Qi, Phys. Rev. Lett. 108, 130503 (2012)

MDI-QKD Protocol Alice & Bob encode key bits into polarization/time-bin/phase of weak coherent pulses with decoy states; Alice & Bob send their pulses to Charlie/Eve; Charlie performs Bell state measurements (BSM) on incoming pulses; Charlie announces BSM results to Alice and Bob; Alice and Bob announce basis selections over a public channel, and generate a sifted key; Error correction and privacy amplification  secure key.

Measurement-Device-Independent QKD (MDI-QKD) MADE IN NORTH KOREA Measurement devices can be manufactured by an untrusted party No need to certify detection systems in QKD, thus simplifying standardization of QKD by ETSI. Lo, Curty, and Qi, Phys. Rev. Lett. 108, 130503 (2012)

MDI-QKD Performance Performance comparable to entanglement based QKD Key rate much higher than that of a DI-QKD The only feasible solution to the security problem of QKD today Entanglement based QKD MDI-QKD Reproduced from Phys. Rev. Lett. 108, 130503 (2012)

Previous experimental work Proof-of-principle demonstrations: Time-bin encoding A. Rubenok et al., arXiv: 1304.2463 Polarization encoding T. Ferreira da Silva et al., arXiv: 1207.6345 Time-bin phase encoding Y. Liu et al., arXiv: 1209.6178, to be published in Phys. Rev. Lett. Did not perform real QKD (e.g., random bit/basis selection); no finite key effect correction.

arXiv: 1306.6134 Our Experiment The first demonstration of polarization encoding MDI-QKD over 10 km of telecom fibers. We only use commercial off-the-shelf devices in our setup Why polarization encoding? Polarization qubits can be easily prepared / detected Has been used in both fiber and free space Polarization management still required in time-bin / phase encoding for efficient operation

Our Experiment Optimized performance: Correct for finite key effect arXiv: 1306.6134 Our Experiment Optimized performance: Signal state: µ = 0.3 photon per pulse Two decoy states: ν = 0.1, ω = 0.01 photon per pulse Correct for finite key effect Xu et al., arXiv: 1305.6965 Ma et al., Phys. Rev. A 86 052305 (2012)

Our Experiment Active phase randomization of weak coherent pulses is implemented to close this loophole Y. Tang et al., arXiv: 1304.2541

Experimental Setup arXiv: 1306.6134 1 rect diag Active Phase 1 rect diag Active Phase Randomization Polarization Encoding Decoy states 500 KHz 5 km single mode fiber 5 km single mode fiber Coincidence  Projection into Pulses: 1 ns FWHM

Experimental Setup arXiv: 1306.6134 Challenges: Bell state measurements require photons be indistinguishable in Arrival time Independently controlled by a delay generator, difference < 100 ps Spectrum Mismatch < 10 MHz (pulse BW ~ 1 GHz, sufficient spectral overlap) 500 KHz 5 km single mode fiber 5 km single mode fiber Frequency locked lasers, independently locked to a molecular absorption line at ~1542 nm Precise polarization alignment

Results Key Rate Estimation arXiv: 1306.6134 q : fraction of pulses used for key generation Both Alice and Bob send signal states in rectilinear basis, q = 0.01 Measured from experiment Gain , Error Rate Estimated gain and error rate of single photon pulses using two decoy-state method Privacy amplification Error correction F. Xu et al., arXiv: 1305.6965

Results arXiv: 1306.6134 Number of pulses sent out: 1.69×1011

Results Key Rate Estimation Secure key rate arXiv: 1306.6134 q : fraction of pulses used for key generation Both Alice and Bob send signal states in rectilinear basis, q = 0.01 Measured from experiment Estimated using two decoy-state method, considering three standard deviations for statistical fluctuation analysis Secure key rate R = 1×10-8 bit per pulse , 1600 secure bits generated Xu et al., arXiv: 1305.6965 Ma et al., Phys. Rev. A 86 052305 (2012) Without finite key effect correction, R ~ 6.6×10-6

Future outlook Detector side-channel free QKD network Compact and low-cost devices Alice Bob Hughes et al., arXiv 1305.0305 Untrusted service centre (Bell state measurement) Bob Alice Alice Bob

Future outlook Long distance MDI-QKD

Future outlook Ground-to-satellite QKD with an untrusted satellite BOB ALICE

Conclusion We demonstrated the feasibility of polarization encoding MDI-QKD in telecom fibers MDI-QKD is straight forward to implement with today’s commercial optoelectronic devices MDI-QKD is highly compatible with quantum network One step closer to quantum internet

Related work in MDI-QKD Theory X. Ma and M. Razavi, Phys. Rev. A 86, 062319 (2012); X. Ma et al., Phys. Rev. A 86, 052305 (2012); T. Song et al., Phys. Rev A 86, 022332 (2012); X. –B. Wang, Phys. Rev. A 87, 012320 (2013); S. –H. Sun et al., Phys. Rev. A 87, 052329 (2013); S. Abruzzo et al., arXiv: 1306.3095. Experiments A. Rubenok et al., arXiv: 1304.2463; T.F. da Silva et al., arXiv: 1207.6345; Y. Liu et al., arXiv: 1209.6178. Other related work S. Braunstein and S. Pirandola, Phys. Rev. Lett. 108, 130502 (2012); C. C. W. Lim et al., arXiv: 1208.0023.

Our group’s work on MDI-QKD Proposing the idea of MDI-QKD: H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012). Experiment (this talk): Z. Tang et al., arXiv: 1306.6134 Finite key analysis: M. Curty et al., arXiv: 1307.1081 Finite decoy state protocol; MDI-QKD with different channel losses F. Xu et al., arXiv: 1305.6965; see POSTER SESSION MDI-QKD with basis-dependent flaws K. Tamaki et al., Phys. Rev. A 85, 042307 (2012) Long distance MDI-QKD with entangled photons: F. Xu et al., Appl. Phys. Lett. 103, 061101 (2013) Quantum Random Number Generator Industrial Exhibit session; F. Xu et al., Opt. Express 20, 12366 (2012).