Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz

Slides:



Advertisements
Similar presentations
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Advertisements

Remainder and Factor Theorems
Long and Synthetic Division of Polynomials Section 2-3.
Dividing Polynomials Objectives
Chapter 6: Polynomials and Polynomial Functions Section 6
EXAMPLE 1 Use polynomial long division
Warm up. Lesson 4-3 The Remainder and Factor Theorems Objective: To use the remainder theorem in dividing polynomials.
Warm Up Divide using long division ÷ ÷
Synthetic Division. This method is used to divide polynomials, one of which is a binomial of degree one.
4-5, 4-6 Factor and Remainder Theorems r is an x intercept of the graph of the function If r is a real number that is a zero of a function then x = r.
HW: Pg #13-61 eoo.
6.8 Synthetic Division. Polynomial Division, Factors, and Remainders In this section, we will look at two methods to divide polynomials: long division.
Polynomial Division, Factors, and Remainders ©2001 by R. Villar All Rights Reserved.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Warm Up Divide using long division ÷ ÷
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Section 3-3 Dividing Polynomials Objectives: Use Long Division and Synthetic Division to divide polynomials.
Bell Work Week #16 (12/4/13) Divide using long division. You’ve got 3 minutes ÷ ÷ 12.
Warm up  Divide using polynomial long division:  n 2 – 9n – 22 n+2.
5. Divide 4723 by 5. Long Division: Steps in Dividing Whole Numbers Example: 4716  5 STEPS 1. The dividend is The divisor is 5. Write.
Algebraic long division Divide 2x³ + 3x² - x + 1 by x + 2 x + 2 is the divisor The quotient will be here. 2x³ + 3x² - x + 1 is the dividend.
Objective Use long division and synthetic division to divide polynomials.
Chapter 1 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Dividing Polynomials; Remainder and Factor Theorems.
6-5: The Remainder and Factor Theorems Objective: Divide polynomials and relate the results to the remainder theorem.
6.3 Dividing Polynomials (Day 1)
12-6 Dividing Polynomials Warm Up Lesson Presentation Lesson Quiz
Objective Use long division and synthetic division to divide polynomials.
6.3 D IVIDING P OLYNOMIAL Use long division and synthetic division to divide polynomials. Use synthetic division to evaluate a polynomial Objective Electricians.
Warm up Objective: To divide polynomials Lesson 6-7 Polynomial Long Division.
9.4 Polynomial Division, Factors, and Remainders ©2001 by R. Villar All Rights Reserved.
Warm Up Divide using long division ÷ Divide.
Division of Polynomials Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Dividing Polynomials Long division of polynomials.
Holt Algebra Dividing Polynomials Synthetic division is a shorthand method of dividing a polynomial by a linear binomial by using only the coefficients.
Warm Up Divide using long division, if there is a remainder put it as a fraction ÷ ÷ x + 5y 23 7a – b Divide. 6x – 15y 3 7a 2.
Then/Now You factored quadratic expressions to solve equations. (Lesson 0–3) Divide polynomials using long division and synthetic division. Use the Remainder.
Chapter Dividing polynomials. Objectives  Use long division and synthetic division to divide polynomials.
3.2 Division of Polynomials. Remember this? Synthetic Division 1. The divisor must be a binomial. 2. The divisor must be linear (degree = 1) 3. The.
Holt Algebra Dividing Polynomials 6-3 Dividing Polynomials Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Objective Use long division and synthetic division to divide polynomials.
Divide using long division.
Warm Up Divide using long division ÷ ÷ 2.1 Divide.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Warm Up Divide using long division ÷ Divide.
Dividing Polynomials 3-3 Warm Up Lesson Presentation Lesson Quiz
Warm Up Divide using long division ÷ ÷
Introduction In mathematics, the word “remainder” is often used in relation to the process of long division. You are probably familiar with dividing whole.
Essential Questions How do we use long division and synthetic division to divide polynomials?
Warm-up 6-5 1) 2).
Warm Up Divide using long division ÷ ÷
7.4 The Remainder and Factor Theorems
Splash Screen.
Dividing Polynomials Warm Up Lesson Presentation Lesson Quiz
DIVIDING POLYNOMIALS Synthetically!
Apply the Remainder and Factor Theorems Lesson 2.5
Binomial Theorem Honor’s Algebra II.
Dividing Polynomials.
Dividing Polynomials 3-3 Warm Up Lesson Presentation Lesson Quiz
Objective Use long division and synthetic division to divide polynomials.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 3-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Warm up.
Algebra 1 Section 9.6.
2.5 Apply the Remainder and Factor Theorem
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Divide using long division
Warm Up Honors Algebra 2 11/3/17
Presentation transcript:

Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2

Warm Up Divide using long division. 1. 161 ÷ 7 23 2. 12.18 ÷ 2.1 5.8 6x – 15y 3 3. 2x + 5y 7a2 – ab a 4. 7a – b

Objective Use long division and synthetic division to divide polynomials.

Vocabulary synthetic division

Polynomial long division is a method for dividing a polynomial by another polynomials of a lower degree. It is very similar to dividing numbers.

Check It Out! Example 1a Divide using long division. (15x2 + 8x – 12) ÷ (3x + 1) Step 1 Write the dividend in standard form, including terms with a coefficient of 0. 15x2 + 8x – 12 Step 2 Write division in the same way you would when dividing numbers. 3x + 1 15x2 + 8x – 12

Check It Out! Example 1a Continued Step 3 Divide. 5x + 1 Notice that 3x times 5x is 15x2. Write 5x above 15x2. 3x + 1 15x2 + 8x – 12 –(15x2 + 5x) Multiply 3x + 1 by 5x. Then subtract. Bring down the next term. Divide 3x by 3x. 3x – 12 –(3x + 1) Multiply 3x + 1 by 1. Then subtract. –13 Find the remainder.

Check It Out! Example 1a Continued Step 4 Write the final answer. 15x2 + 8x – 12 3x + 1 = 5x + 1 – 13 3x + 1

Check It Out! Example 1b Divide using long division. (x2 + 5x – 28) ÷ (x – 3) Step 1 Write the dividend in standard form, including terms with a coefficient of 0. x2 + 5x – 28 Step 2 Write division in the same way you would when dividing numbers. x – 3 x2 + 5x – 28

Check It Out! Example 1b Continued Step 3 Divide. x + 8 Notice that x times x is x2. Write x above x2. x – 3 x2 + 5x – 28 –(x2 – 3x) Multiply x – 3 by x. Then subtract. Bring down the next term. Divide 8x by x. 8x – 28 –(8x – 24) Multiply x – 3 by 8. Then subtract. –4 Find the remainder.

Check It Out! Example 1b Continued Step 4 Write the final answer. x2 + 5x – 28 x – 3 = x + 8 – 4 x – 3

Synthetic division is a shorthand method of dividing a polynomial by a linear binomial by using only the coefficients. For synthetic division to work, the polynomial must be written in standard form, using 0 and a coefficient for any missing terms, and the divisor must be in the form (x – a).

Check It Out! Example 2a Divide using synthetic division. (6x2 – 5x – 6) ÷ (x + 3) Step 1 Find a. a = –3 For (x + 3), a = –3. Step 2 Write the coefficients and a in the synthetic division format. –3 6 –5 –6 Write the coefficients of 6x2 – 5x – 6.

Check It Out! Example 2a Continued Step 3 Bring down the first coefficient. Then multiply and add for each column. –3 6 –5 –6 Draw a box around the remainder, 63. –18 69 6 –23 63 Step 4 Write the quotient. 6x – 23 + 63 x + 3 Write the remainder over the divisor.

Check It Out! Example 2b Divide using synthetic division. (x2 – 3x – 18) ÷ (x – 6) Step 1 Find a. a = 6 For (x – 6), a = 6. Step 2 Write the coefficients and a in the synthetic division format. 6 1 –3 –18 Write the coefficients of x2 – 3x – 18.

Check It Out! Example 2b Continued Step 3 Bring down the first coefficient. Then multiply and add for each column. 6 1 –3 –18 There is no remainder. 6 18 1 3 Step 4 Write the quotient. x + 3

You can use synthetic division to evaluate polynomials You can use synthetic division to evaluate polynomials. This process is called synthetic substitution. The process of synthetic substitution is exactly the same as the process of synthetic division, but the final answer is interpreted differently, as described by the Remainder Theorem.

Check It Out! Example 3a Use synthetic substitution to evaluate the polynomial for the given value. P(x) = x3 + 3x2 + 4 for x = –3. –3 1 3 0 4 Write the coefficients of the dividend. Use 0 for the coefficient of x2 Use a = –3. –3 1 4 P(–3) = 4 Check Substitute –3 for x in P(x) = x3 + 3x2 + 4. P(–3) = (–3)3 + 3(–3)2 + 4 P(–3) = 4 

Check It Out! Example 3b Use synthetic substitution to evaluate the polynomial for the given value. 1 5 P(x) = 5x2 + 9x + 3 for x = . 1 5 5 9 3 Write the coefficients of the dividend. Use a = . 1 5 1 2 5 10 5 P( ) = 5 1 5

Check It Out! Example 4 Write an expression for the length of a rectangle with width y – 9 and area y2 – 14y + 45. The area A is related to the width w and the length l by the equation A = l  w. y2 – 14y + 45 y – 9 l(x) = Substitute. 9 1 –14 45 Use synthetic division. 9 –45 1 –5 The length of the rectangle can be represented by l(x)= y – 5.