Find a vector a with representation given by the directed line segment {image} . A(-9, -1) , B(-5, 8) {image} 1. 2. 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Find a vector a with representation given by the directed line segment {image} . A(7, 3, -10) , B(9, 8, -1) 1. 2. {image} 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Find 7a + 9b . a = {image} {image} 1. 2. 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Find 2a + 6b . a = 2i - 10k , b = 7i -3j + 2k 47i - 17j - 7k 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
311.59 km/h 310.08 km/h 309.38 km/h 310.58 km/h 320.58 km/h Velocities have both direction and magnitude and thus are vectors. The magnitude of a velocity vector is called speed. Suppose that a wind is blowing from the direction N 28° W at a speed of 49 km/h. (This means that the direction from which the wind blows is 28° west of the northerly direction.) A pilot is steering a plane in the direction N 24° E at an airspeed (speed in still air) of 278 km/h. The true course, or track, of the plane is the direction of the resultant of the velocity vectors of the plane and the wind. The ground speed of the plane is the magnitude of the resultant. Find the ground speed of the plane. Round the result to the nearest hundredth. 311.59 km/h 310.08 km/h 309.38 km/h 310.58 km/h 320.58 km/h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
The tension T at each end of the chain has magnitude 35 N and makes an angle {image} with the horizontal. What is the weight of the chain? Round the result to the nearest hundredth. {image} 50.73 lb 45.83 lb 49.63 lb 48.63 lb 47.13 lb 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50