Richard Cleve DC 2117 cleve@cs.uwaterloo.ca Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Lecture 15 (2011)

Slides:



Advertisements
Similar presentations
10.4 Complex Vector Spaces.
Advertisements

Introduction to Entanglement Allan Solomon, Paris VI.
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 11 (2005) Richard Cleve DC 3524
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / RAC 2211 Lecture.
Short course on quantum computing Andris Ambainis University of Latvia.
DENSITY MATRICES, traces, Operators and Measurements
Advanced Computer Architecture Lab University of Michigan Quantum Operations and Quantum Noise Dan Ernst Quantum Noise and Quantum Operations Dan Ernst.
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
Introduction to Quantum Information Processing Lecture 4 Michele Mosca.
Dirac Notation and Spectral decomposition Michele Mosca.
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Dirac Notation and Spectral decomposition
Matrices CS485/685 Computer Vision Dr. George Bebis.
1 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Richard Cleve QNC 3129 Lecture 18 (2014)
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 14 (2009)
1 Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / QNC 3129 Lectures.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 16 (2011)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 19 (2009)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Course.
October 1 & 3, Introduction to Quantum Computing Lecture 1 of 2 Introduction to Quantum Computing Lecture 1 of 2
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 20 (2009)
Quantum correlations with no causal order OgnyanOreshkov, Fabio Costa, ČaslavBrukner Bhubaneswar arXiv: December2011 Conference on Quantum.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
BART VANLUYTEN, JAN C. WILLEMS, BART DE MOOR 44 th IEEE Conference on Decision and Control December 2005 Model Reduction of Systems with Symmetries.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Richard Cleve DC 2117 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Lecture (2011)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lectures
Density matrix and its application. Density matrix An alternative of state-vector (ket) representation for a certain set of state-vectors appearing with.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Object Orie’d Data Analysis, Last Time
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 15 (2009) Richard.
Elementary Linear Algebra
Introduction to Quantum Computing Lecture 1 of 2
LECTURE 10: DISCRIMINANT ANALYSIS
MATH2999 Directed Studies in Mathematics Quantum Process on One Qubit System Name: Au Tung Kin UID:
Quantum One.
ECE 638: Principles of Digital Color Imaging Systems
Quantum Foundations Lecture 15
CS485/685 Computer Vision Dr. George Bebis
Plamen Kamenov Physics 502 Advanced Quantum Mechanics
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 22 (2009) Richard.
Spectral Clustering Eric Xing Lecture 8, August 13, 2010
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 24 (2009) Richard.
Maths for Signals and Systems Linear Algebra in Engineering Lectures 13 – 14, Tuesday 8th November 2016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR)
LECTURE 09: DISCRIMINANT ANALYSIS
Lecture 13: Singular Value Decomposition (SVD)
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 18 (2009) Richard.
Lecture 15: Least Square Regression Metric Embeddings
Corollary If A is diagonalizable and rank A=r,
Linear Vector Space and Matrix Mechanics
Linear Algebra Lecture 30.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 17 (2005) Richard Cleve DC 3524
Computational approaches for quantum many-body systems
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 4 (2005) Richard Cleve DC 653
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Presentation transcript:

Richard Cleve DC 2117 cleve@cs.uwaterloo.ca Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Lecture 15 (2011) Richard Cleve DC 2117 cleve@cs.uwaterloo.ca

Simulations among operations

Simulations among operations (1) Fact 1: any general quantum operation can be simulated by applying a unitary operation on a larger quantum system: U   output input 0 discard 0 0 Example: decoherence 0 0 + 1

Simulations among operations (2) Fact 2: any POVM measurement can also be simulated by applying a unitary operation on a larger quantum system and then measuring: U   quantum output input 0 j classical output 0 0

Separable states

Separable states separable state if A bipartite (i.e. two register) state  is a: product state if  =  separable state if ( p1 ,…, pm  0) (i.e. a probabilistic mixture of product states) Question: which of the following states are separable?

Distance measures for quantum states

Distance measures Some simple (and often useful) measures: Euclidean distance:  ψ − φ 2 Fidelity:  φψ  Small Euclidean distance implies “closeness” but large Euclidean distance need not (for example, ψ vs −ψ ) Not so clear how to extend these for mixed states … … though fidelity does generalize, to Tr√ 1/2  1/2

Trace norm – preliminaries (1) For a normal matrix M and a function f : C  C, we define the matrix f (M) as follows: M = U†DU, where D is diagonal (i.e. unitarily diagonalizable) Now, define f (M) = U†f (D) U, where

Trace norm – preliminaries (2) For a normal matrix M = U†DU, define |M| in terms of replacing D with This is the same as defining |M| = √M†M and the latter definition extends to all matrices (since M†M is positive definite)

Trace norm/distance – definition The trace norm of M is ||M||tr = Tr|M| = Tr√M†M Intuitively, it’s the 1-norm of the eigenvalues (or, in the non-normal case, the singular values) of M The trace distance between  and  is || −  ||tr Why is this a meaningful distance measure between quantum states? Theorem: for any two quantum states  and , the optimal measurement procedure for distinguishing between them succeeds with probability ½ + ¼ || −  ||tr