Objective Transform polynomial functions..

Slides:



Advertisements
Similar presentations
Functions: Transformations of Graphs Vertical Translation: The graph of f(x) + k appears as the graph of f(x) shifted up k units (k > 0) or down k units.
Advertisements

Algebra Transforming Linear Functions
BELLWORK Give the coordinates of each transformation of (2, –3).
Section 2.6 – Families of Functions Different nonvertical lines have different slopes, or y-intercepts or both. They are graphs of different linear functions.
Parent Function Transformation Students will be able to find determine the parent function or the transformed function given a function or graph.
Unit 1: Functions Minds On More Graphing!!! .
Objective Transform polynomial functions..
1 Transformations of Functions SECTION Learn the meaning of transformations. Use vertical or horizontal shifts to graph functions. Use reflections.
Table of Contents Functions: Transformations of Graphs Vertical Translation: The graph of f(x) + k appears.
In Lesson 1-8, you learned to transform functions by transforming each point. Transformations can also be expressed by using function notation.
I can graph and transform absolute-value functions.
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
2.2 b Writing equations in vertex form
An absolute-value function is a function whose rule contains an absolute-value expression. The graph of the parent absolute-value function f(x) = |x| has.
3-8 transforming polynomial functions
Warm Ups: Quiz Review Write a rule for “g” and identify the vertex: 1) Let “g” be a translation 2 units up followed by a reflection in the x – axis and.
Absolute–Value Functions
Graph and transform absolute-value functions.
To remember the difference between vertical and horizontal translations, think: “Add to y, go high.” “Add to x, go left.” Helpful Hint.
Transformation of Functions Sec. 1.7 Objective You will learn how to identify and graph transformations.
How does each function compare to its parent function?
Warm Up Give the coordinates of each transformation of (2, –3). 4. reflection across the y-axis (–2, –3) 5. f(x) = 3(x + 5) – 1 6. f(x) = x 2 + 4x Evaluate.
1. g(x) = -x g(x) = x 2 – 2 3. g(x)= 2 – 0.2x 4. g(x) = 2|x| – 2 5. g(x) = 2.2(x+ 2) 2 Algebra II 1.
1 PRECALCULUS Section 1.6 Graphical Transformations.
Warm-Up Evaluate each expression for x = -2. 1) (x – 6) 2 4 minutes 2) x ) 7x 2 4) (7x) 2 5) -x 2 6) (-x) 2 7) -3x ) -(3x – 1) 2.
Transforming Linear Functions
Chapter 6 - Polynomial Functions Algebra 2. Table of Contents Fundamental Theorem of Algebra Investigating Graphs of Polynomial Functions.
Transforming Linear Functions
Transformations of Functions
Transformations of Functions
2.6 Families of Functions Learning goals
Transformations of Quadratic Functions (9-3)
13 Algebra 1 NOTES Unit 13.
Using Transformations to Graph Quadratic Functions 5-1
Transformations of Graphs
Transformations: Shifts
Warm-Up 1. On approximately what interval is the function is decreasing. Are there any zeros? If so where? Write the equation of the line through.
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Absolute Value Functions
Parent Functions and Transformations
2.6 Translations and Families of Functions
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Warm Up – August 21, 2017 Find the x- and y-intercepts. X – 3y = 9
Section 2.5 Transformations.
Objective Graph and transform |Absolute-Value | functions.
Example 1A: Translating Points
Objectives Transform quadratic functions.
3-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Objectives Identify parent functions from graphs and equations.
Parent Functions.
Graph Transformations
Warm-up: Welcome Ticket
2.7 Graphing Absolute Value Functions
Parent Functions.
Transforming Linear Functions
1.5b Combining Transformations
Objectives Transform linear functions.
Transforming Linear Functions
TRANSFORMING EXPONNTIAL FUNCTIONS
Absolute–Value Functions
2.7 Graphing Absolute Value Functions
Transformations of Functions
1.5b Combining Transformations
LEARNING GOALS FOR LESSON 2.6 Stretches/Compressions
15 – Transformations of Functions Calculator Required
Transformations.
Transformation of Functions
Parent Functions and Transformations
1.3 Combining Transformations
Warm up honors algebra 2 3/1/19
Presentation transcript:

Objective Transform polynomial functions.

You can perform the same transformations on polynomial functions that you performed on quadratic and linear functions.

Example 1A: Translating a Polynomial Function For f(x) = x3 – 6, write the rule for each function and sketch its graph. g(x) = f(x) – 2 g(x) = (x3 – 6) – 2 g(x) = x3 – 8 To graph g(x) = f(x) – 2, translate the graph of f(x) 2 units down. This is a vertical translation.

Example 1B: Translating a Polynomial Function For f(x) = x3 – 6, write the rule for each function and sketch its graph. h(x) = f(x + 3) h(x) = (x + 3)3 – 6 To graph h(x) = f(x + 3), translate the graph 3 units to the left. This is a horizontal translation.

Check It Out! Example 1a For f(x) = x3 + 4, write the rule for each function and sketch its graph. g(x) = f(x) – 5 g(x) = (x3 + 4) – 5 g(x) = x3 – 1 To graph g(x) = f(x) – 5, translate the graph of f(x) 5 units down. This is a vertical translation.

Check It Out! Example 1b For f(x) = x3 + 4, write the rule for each function and sketch its graph. g(x) = f(x + 2) g(x) = (x + 2)3 + 4 g(x) = x3 + 6x2 + 12x + 12 To graph g(x) = f(x + 2), translate the graph 2 units left. This is a horizontal translation.

Reflect f(x) across the x-axis. Example 2A: Reflecting Polynomial Functions Let f(x) = x3 + 5x2 – 8x + 1. Write a function g that performs each transformation. Reflect f(x) across the x-axis. g(x) = –f(x) g(x) = –(x3 + 5x2 – 8x + 1) g(x) = –x3 – 5x2 + 8x – 1 Check Graph both functions. The graph appears to be a reflection.

Reflect f(x) across the y-axis. Example 2B: Reflecting Polynomial Functions Let f(x) = x3 + 5x2 – 8x + 1. Write a function g that performs each transformation. Reflect f(x) across the y-axis. g(x) = f(–x) g(x) = (–x)3 + 5(–x)2 – 8(–x) + 1 g(x) = –x3 + 5x2 + 8x + 1 Check Graph both functions. The graph appears to be a reflection.

Reflect f(x) across the x-axis. Check It Out! Example 2a Let f(x) = x3 – 2x2 – x + 2. Write a function g that performs each transformation. Reflect f(x) across the x-axis. g(x) = –f(x) g(x) = –(x3 – 2x2 – x + 2) g(x) = –x3 + 2x2 + x – 2 Check Graph both functions. The graph appears to be a reflection.

Reflect f(x) across the y-axis. Check It Out! Example 2b Let f(x) = x3 – 2x2 – x + 2. Write a function g that performs each transformation. Reflect f(x) across the y-axis. g(x) = f(–x) g(x) = (–x)3 – 2(–x)2 – (–x) + 2 g(x) = –x3 – 2x2 + x + 2 Check Graph both functions. The graph appears to be a reflection.

Example 3A: Compressing and Stretching Polynomial Functions Let f(x) = 2x4 – 6x2 + 1. Graph f and g on the same coordinate plane. Describe g as a transformation of f. g(x) = f(x) 1 2 g(x) = (2x4 – 6x2 + 1) 1 2 g(x) = x4 – 3x2 + 1 2 g(x) is a vertical compression of f(x).

Example 3B: Compressing and Stretching Polynomial Functions Let f(x) = 2x4 – 6x2 + 1. Graph f and g on the same coordinate plane. Describe g as a transformation of f. g(x) = f( x) 1 3 g(x) = 2( x)4 – 6( x)2 + 1 1 3 g(x) = x4 – x2 + 1 2 81 3 g(x) is a horizontal stretch of f(x).

g(x) is a vertical compression of f(x). Check It Out! Example 3a Let f(x) = 16x4 – 24x2 + 4. Graph f and g on the same coordinate plane. Describe g as a transformation of f. 1 4 g(x) = f(x) g(x) = (16x4 – 24x2 + 4) 1 4 g(x) = 4x4 – 6x2 + 1 g(x) is a vertical compression of f(x).

g(x) is a horizontal stretch of f(x). Check It Out! Example 3b Let f(x) = 16x4 – 24x2 + 4. Graph f and g on the same coordinate plane. Describe g as a transformation of f. 1 2 g(x) = f( x) g(x) = 16( x)4 – 24( x)2 + 4 1 2 g(x) = x4 – 3x2 + 4 g(x) is a horizontal stretch of f(x).

Example 4A: Combining Transformations Write a function that transforms f(x) = 6x3 – 3 in each of the following ways. Support your solution by using a graphing calculator. Compress vertically by a factor of , and shift 2 units right. 1 3 g(x) = f(x – 2) 1 3 g(x) = (6(x – 2)3 – 3) 1 3 g(x) = 2(x – 2)3 – 1

Example 4B: Combining Transformations Write a function that transforms f(x) = 6x3 – 3 in each of the following ways. Support your solution by using a graphing calculator. Reflect across the y-axis and shift 2 units down. g(x) = f(–x) – 2 g(x) = (6(–x)3 – 3) – 2 g(x) = –6x3 – 5

Check It Out! Example 4a Write a function that transforms f(x) = 8x3 – 2 in each of the following ways. Support your solution by using a graphing calculator. Compress vertically by a factor of , and move the x-intercept 3 units right. 1 2 g(x) = f(x – 3) 1 2 g(x) = (8(x – 3)3 – 2 1 2 g(x) = 4(x – 3)3 – 1 g(x) = 4x3 – 36x2 + 108x – 1

Check It Out! Example 4b Write a function that transforms f(x) = 6x3 – 3 in each of the following ways. Support your solution by using a graphing calculator. Reflect across the x-axis and move the x-intercept 4 units left. g(x) = –f(x + 4) g(x) = –6(x + 4)3 – 3 g(x) = –8x3 – 96x2 – 384x – 510

Example 5: Consumer Application The number of skateboards sold per month can be modeled by f(x) = 0.1x3 + 0.2x2 + 0.3x + 130, where x represents the number of months since May. Let g(x) = f(x) + 20. Find the rule for g and explain the meaning of the transformation in terms of monthly skateboard sales. Step 1 Write the new rule. The new rule is g(x) = f(x) + 20 g(x) = 0.1x3 + 0.2x2 + 0.3x + 130 + 20 g(x) = 0.1x3 + 0.2x2 + 0.3x + 150 Step 2 Interpret the transformation. The transformation represents a vertical shift 20 units up, which corresponds to an increase in sales of 20 skateboards per month.

g(x) = 0.01(x – 5)3 + 0.7(x – 5)2 + 0.4(x – 5) + 120 Check It Out! Example 5 The number of bicycles sold per month can be modeled by f(x) = 0.01x3 + 0.7x2 + 0.4x + 120, where x represents the number of months since January. Let g(x) = f(x – 5). Find the rule for g and explain the meaning of the transformation in terms of monthly skateboard sales. Step 1 Write the new rule. The new rule is g(x) = f(x – 5). g(x) = 0.01(x – 5)3 + 0.7(x – 5)2 + 0.4(x – 5) + 120 g(x) = 0.01x3 + 0.55x2 – 5.85x + 134.25 Step 2 Interpret the transformation. The transformation represents the number of sales since March.

Lesson Quiz: Part I 1. For f(x) = x3 + 5, write the rule for g(x) = f(x – 1) – 2 and sketch its graph. g(x) = (x – 1)3 + 3

Lesson Quiz: Part II 2. Write a function that reflects f(x) = 2x3 + 1 across the x-axis and shifts it 3 units down. h(x) = –2x3 – 4 3. The number of videos sold per month can be modeled by f(x) = 0.02x3 + 0.6x2 + 0.2x + 125, where x represents the number of months since July. Let g(x) = f(x) – 15. Find the rule for g and explain the meaning of the transformation in terms of monthly video sales. 0.02x3 + 0.6x2 + 0.2x + 110; vertical shift 15 units down; decrease of 15 units per month