Introduction to Inference

Slides:



Advertisements
Similar presentations
Statistical Techniques I EXST7005 Lets go Power and Types of Errors.
Advertisements

+ Chapter 10 Section 10.4 Part 2 – Inference as Decision.
Section 9.2: What is a Test of Significance?. Remember… H o is the Null Hypothesis ▫When you are using a mathematical statement, the null hypothesis uses.
Lecture 2: Thu, Jan 16 Hypothesis Testing – Introduction (Ch 11)
Understanding Statistics in Research
Errors in Hypothesis Tests. When you perform a hypothesis test you make a decision: When you make one of these decisions, there is a possibility that.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 11 Introduction to Hypothesis Testing.
Hypothesis testing is used to make decisions concerning the value of a parameter.
Errors in Hypothesis Tests. When you perform a hypothesis test you make a decision: When you make one of these decisions, there is a possibility that.
Using Inference to Make Decisions
Errors in Hypothesis Tests. When you perform a hypothesis test you make a decision: When you make one of these decisions, there is a possibility that.
Significance Toolbox 1) Identify the population of interest (What is the topic of discussion?) and parameter (mean, standard deviation, probability) you.
Lecture 16 Dustin Lueker.  Charlie claims that the average commute of his coworkers is 15 miles. Stu believes it is greater than that so he decides to.
Errors & Power. 2 Results of Significant Test 1. P-value < alpha 2. P-value > alpha Reject H o & conclude H a in context Fail to reject H o & cannot conclude.
 When we perform a hypothesis test, we make a decision to either Reject the Null Hypothesis or Fail to Reject the Null Hypothesis.  There is always the.
Hypothesis Testing – A Primer. Null and Alternative Hypotheses in Inferential Statistics Null hypothesis: The default position that there is no relationship.
Errors in Hypothesis Tests. When you perform a hypothesis test you make a decision: When you make one of these decisions, there is a possibility that.
Errors in Hypothesis Tests Notes: P When you perform a hypothesis test you make a decision: When you make one of these decisions, there is a possibility.
Errors in Hypothesis Tests. When you perform a hypothesis test you make a decision: When you make one of these decisions, there is a possibility that.
Type I and Type II Errors. An analogy may help us to understand two types of errors we can make with inference. Consider the judicial system in the US.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Unit 5: Hypothesis Testing.
Statistical Techniques
Introduction to Inference Tests of Significance Errors in the justice system Actual truth Jury decision GuiltyNot guilty Guilty Not guilty Correct decision.
Lesson 2: Section 9.1 (part 2).  Interpret a Type I Error and a Type II Error in context, and give the consequences of each.  Understand the relationship.
+ Homework 9.1:1-8, 21 & 22 Reading Guide 9.2 Section 9.1 Significance Tests: The Basics.
INTRODUCTION TO TESTING OF HYPOTHESIS INTRODUCTION TO TESTING OF HYPOTHESIS SHWETA MOGRE.
Introduction to Inference Tests of Significance Proof
Chapter Nine Hypothesis Testing.
Errors in Hypothesis Tests
Warm Up #’s 12, 14, and 16 on p. 552 Then answer the following question; In a jury trial, what two errors could a jury make?
Introduction to Inference
Type I & Type II Errors And Power
Section Testing a Proportion
Errors in Hypothesis Tests
Power of a test.
Type II Error, Power and Sample Size Calculations
Keller: Stats for Mgmt & Econ, 7th Ed Hypothesis Testing
Power of a test.
Power of a test.
CONCEPTS OF HYPOTHESIS TESTING
Errors in Hypothesis Tests
Errors in Hypothesis Tests
Errors in Hypothesis Tests
Elementary Statistics: Picturing The World
Statistical Tests - Power
Unlocking the Mysteries of Hypothesis Testing
CHAPTER 9 Testing a Claim
LESSON 20: HYPOTHESIS TESTING
Chapter Nine Part 1 (Sections 9.1 & 9.2) Hypothesis Testing
Using Inference to Make Decisions
Chapter 11: Introduction to Hypothesis Testing Lecture 5a
Introduction to Inference
Chapter 3 Probability Sampling Theory Hypothesis Testing.
Errors in Hypothesis Tests
Errors in Hypothesis Tests
Power of a test.
Power of a test.
Power of a Hypothesis Test
Power of a test.
Errors in Hypothesis Tests
Chapter 9: Testing a Claim
Chapter 11 & 12: Inference as Decision
  Pick a card….
CHAPTER 9 Testing a Claim
Homework: pg. 727 & ) A. Ho: p=0.75, Ha:p>0.75
Power of a test.
Errors in Hypothesis Tests
Inference as Decision Section 10.4.
Power and Error What is it?.
STA 291 Spring 2008 Lecture 17 Dustin Lueker.
Presentation transcript:

Introduction to Inference Tests of Significance

Errors in the justice system Actual truth Guilty Not guilty Correct decision Type I error Guilty Jury decision Not guilty Type II error Correct decision

“No innocent man is jailed” justice system Actual truth Guilty Not guilty Type I error Guilty smaller Jury decision Not guilty Type II error larger

“No guilty man goes free” justice system Actual truth Guilty Not guilty Type I error Guilty larger Jury decision Not guilty Type II error smaller

Errors in the justice system Actual truth Guilty Not guilty (Ha true) (H0 true) Correct decision Type I error Guilty (reject H0) Jury decision Not guilty Type II error Correct decision (fail to reject H0)

Type I and Type II example Water samples are taken from water used for cooling as it is being discharged from a power plant into a river. It has been determined that as long as the mean temperature of the discharged water is at most 150oF, there will be no negative effects on the river's ecosystem. To investigate whether the plant is in compliance with regulations that prohibit a mean discharge water temperature above 150o, 50 water samples will be taken at randomly selected times, and the temperature of each sample recorded. The resulting data will be used to test the hypotheses Ho: m = 150o versus Ha: m > 150o.

Type I and Type II example Type I error: We think the water temperature is greater than 150o, but actually the temperature is equal to 150o. Consequence: We falsely accuse the plant of producing water too hot and harming the environment when nothing wrongful was done.

Type I and Type II example Type II error: We think the water temperature is equal to 150o, but actually the temperature is greater than 150o. Consequence: We believe the plant’s water is a normal temperature, when actually they are harming the environment.

Type I and Type II example The significance level (a) is also the probability of committing a Type I error. As the probability of committing a Type I error goes down, the probability of committing a Type II error goes up

Type I and Type II errors If we believe Ha when in fact H0 is true, this is a type I error. If we believe H0 when in fact Ha is true, this is a type II error. Type I error: if we reject H0 and it’s a mistake. Type II error: if we fail to reject H0 and it’s a mistake. APPLET

Type I and Type II example A distributor of handheld calculators receives very large shipments of calculators from a manufacturer. It is too costly and time consuming to inspect all incoming calculators, so when each shipment arrives, a sample is selected for inspection. Information from the sample is then used to test Ho: p = .02 versus Ha: p < .02, where p is the true proportion of defective calculators in the shipment. If the null hypothesis is rejected, the distributor accepts the shipment of calculators. If the null hypothesis cannot be rejected, the entire shipment of calculators is returned to the manufacturer due to inferior quality. (A shipment is defined to be of inferior quality if it contains 2% or more defectives.)

Type I and Type II example Type I error: We think the proportion of defective calculators is less than 2%, but it’s actually 2% (or more). Consequence: Accept shipment that has too many defective calculators so potential loss in revenue.

Type I and Type II example Type II error: We think the proportion of defective calculators is 2%, but it’s actually less than 2%. Consequence: Return shipment thinking there are too many defective calculators, but the shipment is ok.

Type I and Type II example Calculator manufacturer wants to avoid Type II error. Choose a = .10 Distributor wants to avoid Type I error. Choose a = .01

Concept of Power Definition? Power is the capability of accomplishing something… The power of a test of significance is…

Power Example In a power generating plant, pressure in a certain line is supposed to maintain an average of 100 psi over any 4 - hour period. If the average pressure exceeds 103 psi for a 4 - hour period, serious complications can evolve. During a given 4 - hour period, thirty random measurements are to be taken. The standard deviation for these measurements is 4 psi (graph of data is reasonably normal), test Ho: m = 100 psi versus the alternative “new” hypothesis m = 103 psi. Test at the alpha level of .01. Calculate a type II error and the power of this test. In context of the problem, explain what the power means.

Type I error and a a is the probability that we think the mean pressure is above 100 psi, but actually the mean pressure is 100 psi (or less)

Type I error and a

Type II error and b

Type II error and b b is the probability that we think the mean pressure is 100 psi, but actually the pressure is greater than 100 psi.

Power?

For a sample size of 30, there is a For a sample size of 30, there is a .9495 probability that this test of significance will correctly detect if the pressure is above 100 psi.

Concept of Power The power of a test of significance is the probability that the null hypothesis will be correctly rejected. Because the true value of m is unknown, we cannot know what the power is for m, but we are able to examine “what if” scenarios to provide important information. Power = 1 – b

Concept of Power Ways to increase Power: Increase sample size (which also decreases the standard deviation) Choose a larger alpha Pick an Alternative hypothesis that is further away from the Null hypothesis

Concept of Power So… Alpha (α) and Beta (β) move in opposite directions Beta (β) and Power move in opposite directions Alpha (α) and Power move in the same direction

Concept of Power Recall that the significance level (α), is the probability of committing a Type I error. The probability of committing a Type II error is known as β (beta) As alpha goes up, beta goes down, and vice versa

Concept of Power The power of a test of significance is the probability that the null hypothesis will be correctly rejected. The jury finds the defendant guilty and he/she is actually guilty In other words, it is the probability of coming to a correct, accurate conclusion Power = 1 – b

Concept of Power Ways to increase Power: Increase sample size (which also decreases the standard deviation) Choose a larger alpha Pick an Alternative hypothesis that is further away from the Null hypothesis

Concept of Power So… Alpha (α) and Beta (β) move in opposite directions Beta (β) and Power move in opposite directions Alpha (α) and Power move in the same direction