9. Frequency-Domain Analysis

Slides:



Advertisements
Similar presentations
Stability Margins Professor Walter W. Olson
Advertisements

Bode Diagram (1) Hany Ferdinando Dept. of Electrical Engineering Petra Christian University.
By: Nafees Ahmed Asstt. Prof., EE Deptt, DIT, Dehradun
Automatique by meiling Chen1 Lesson 11 Bode Diagram.
Chapter 10 Stability Analysis and Controller Tuning
Chapter 10: Frequency Response Techniques 1 ©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e Chapter 10 Frequency Response Techniques.
CHE 185 – PROCESS CONTROL AND DYNAMICS
Review. Please Return Loan Clickers to the MEG office after Class! Today! FINAL EXAM: Wednesday December 8 8:00 AM to 10:00 a.m.
Frequency Response Methods and Stability
Lecture 9: Compensator Design in Frequency Domain.
Dr. / Mohamed Ahmed Ebrahim Mohamed Automatic Control By Dr. / Mohamed Ahmed Ebrahim Mohamed Web site:
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
Automatic Control Theory-
Automatic Control System
Frequency Response OBJECTIVE - Bode and Nyquist plots for control analysis - Determination of transfer function - Gain and Phase margins - Stability in.
INC 341PT & BP INC341 Frequency Response Method (continue) Lecture 12.
Chapter 6: Frequency Domain Anaysis
Frequency Response OBJECTIVE - Bode and Nyquist plots for control analysis - Determination of transfer function - Gain and Phase margins - Stability in.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
自动控制原理 西南交通大学电气工程学院 朱英华 (Catherine) The Principle of Automatic Control.
INC 341PT & BP INC341 Frequency Response Method Lecture 11.
Chapter 6: Frequency Domain Anaysis
DC-DC Fundamentals 1.5 Converter Control. What is Converter Control? A converter can provide a constant voltage output at various condition because of.
Feedback. 8.4 The Series-Shunt Feedback Amplifier The Ideal Situation.
Lecture 22: Frequency Response Analysis (Pt II) 1.Conclusion of Bode plot construction 2.Relative stability 3.System identification example ME 431, Lecture.
Frequency Response Analysis
CONTROLLER DESIGN Objective ~ Type of compensator
A Freq. Resp. Example Wednesday 25 Oct 2013 EE 401: Control Systems Analysis and Design A Radar Tracking System  Design a unity DC gain phase lead compensator.
Root Locus Method. Root Locus Method Root Locus Method.
G(s) Input (sinusoid) Time Output Ti me InputOutput A linear, time-invariant single input and single output (SISO) system. The input to this system is.
Professor Walter W. Olson Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo Lecture 24a Problem Session.
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
Lecture 16 Bode Analysis, stability, Gain and Phase Margins North China Electric Power University Sun Hairong.
Lesson 22: Determining Control Stability Using Bode Plots
Time Domain and Frequency Domain Analysis
Nyguist criterion Assist. Professor. Dr. Mohammed Abdulrazzaq.
6. Nyquist Diagram, Bode Diagram, Gain Margin, Phase Margin,
DNT Control Principle Frequency Response Techniques DNT Control Principle.
Examples on Compensator Design Spring 2011
Frequency-Domain Analysis and stability determination
x points: -7, -4+3i HW 5 Problem:05-01
Bode Plot Nafees Ahmed Asstt. Professor, EE Deptt DIT, DehraDun.
Control System Analysis and Design by the Frequency Response Method
LINEAR CONTROL SYSTEMS
What is the system type? What are Kp, Kv, Ka?
Frequency Resp. method Given:
Control System Toolbox
Digital Control Systems (DCS)
Stability from Nyquist plot
Frequency Response Techniques
Frequency Resp. method Given: G(s)
Hanani binti Abdul Wahab 24 September 2008
Feedback Control Systems (FCS)
Frequency Response Techniques
Project 1: Brake System Modelling & Control
Feedback Control Systems (FCS)
Margins on Bode plots G(s) + -.
Frequency Response Method
دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده
Chapter 8. Frequency-Domain Analysis
Frequency Domain specifications.
3.Closed-Loop Transfer Functions
7-5 Relative Stability.
Example Combination of Systems Transfer Function:
Control System Toolbox (Part-III)
LINEAR CONTROL SYSTEMS
Frequency Response OBJECTIVE
LINEAR CONTROL SYSTEMS
Frequency Response Techniques
Presentation transcript:

9. Frequency-Domain Analysis We give meaning to the steady-state response of systems to sinusoidal inputs, which is called as the frequency response. For the response, the transfer function is evaluted as s=i. 9.1 Sinusoidal responses DEU-MEE 5017 Advanced Automatic Control

Find the response for the considered system to an input of 7cos3t. Example 9.1: Find the response for the considered system to an input of 7cos3t. MATLAB: s=3*i; ng=5;dg=[1 5]; giw=polyval(ng,s) / polyval(dg,s); ga=abs(giw),gfi=angle(giw) MATLAB gives the results as ga = 0.8575, gfi = -0.5404 r(t)=7cos3t c(t)=7*0.8575cos(3t-0.5404) = 6.0025cos(3t-0.5404)

We can plot the sinusoidal input and response by MATLAB. Example 9.1: (Continue) We can plot the sinusoidal input and response by MATLAB. clc;clear; a=7;w=3; %--------------------------------------------- s=w*i; ng=5;dg=[1 5]; giw=polyval(ng,s) / polyval(dg,s); ga=abs(giw),gfi=angle(giw) tp=2*pi/w;dt=tp/20; t=0:dt:5*tp; r=7*cos(w*t); plot(t,r);hold on; c=a*ga*cos(w*t+gfi); plot(t,c,'r');

Find the response for the considered system to an input of 7cos3t. Example 9.2: Find the response for the considered system to an input of 7cos3t. MATLAB: clc;clear; a=7;w=3; ksi=0.5;wn=sqrt(5); %--------------------------------- s=w*i; ng=5;dg=[1 2*ksi*wn wn^2]; giw=polyval(ng,s) / polyval(dg,s); ga=abs(giw),gfi=angle(giw) tp=2*pi/w;dt=tp/20; t=0:dt:5*tp; r=7*cos(w*t); plot(t,r);hold on; c=a*ga*cos(w*t+gfi); plot(t,c,'r'); r(t)=7cos3t c(t)=7*0.5249cos(3t-2.3603)

Example 9.2: (Continue)

Consider Example 9.1. Plot the frequency response of the system. 9.2 Frequency responses The frequency response has meaning far beyond the calculation of the time response to sinusoids. We define the frequency response function to be a the function G(i) for 0  . For a given value of , G(i) is a complex number. Thus the function G(i) is a complex function. Consider the frequency response of systems (Example 9.1-9.2) . Example 9.3: Consider Example 9.1. Plot the frequency response of the system. MATLAB: clc;clear; to=1/5; wb=1/to; w=0:0.05:10*wb; %--------------------------------- s=w*i; ng=5;dg=[1 5]; giw=polyval(ng,s)./ polyval(dg,s); mag=abs(giw);fi=angle(giw); subplot(2,1,1);plot(w,mag); subplot(2,1,2);plot(w,fi*180/pi);

Reconsider Example 9.2. Plot the frequency response of the system. MATLAB: clc;clear; ksi=0.5;wn=sqrt(5); w=0:0.05:3*wn; %--------------------------------- s=w*i; ng=5;dg=[1 2*ksi*wn wn^2]; giw=polyval(ng,s) ./ polyval(dg,s); mag=abs(giw);fi=angle(giw); subplot(2,1,1);hold on;plot(w,mag,'k'); subplot(2,1,2);hold on;plot(w,fi*180/pi,'k');

) s ( R Magnitude: Bode plots Phase : 9.3 Bode diagram Bode diagram is a plot of magnitude of the loop transfer function KGp(i) in decibels and the phase of KGp(i) in degrees, all versus frequency . The stability of the closed loop system can be determined by observing the behaviour of these plots. ) s ( R Magnitude: Bode plots Phase :

) s ( R MATLAB: Example 9.5: clc;clear;close all w=0:0.05:1000; k=1;ng=8;dg=conv([1 5 0],[1 2 18]); dh=polyadd(k*ng,dg);roots(dh) %--------------------------------- s=w*i; hiw=polyval(k*ng,s)./ polyval(dg,s); mag=abs(hiw);fi=angle(hiw); bode(k*ng,dg) %hold on;plot(w,20*log10(mag),'k'); %return figure(2) subplot(2,1,1);hold on;plot(log10(w),20*log10(mag),'k'); subplot(2,1,2);hold on;plot(log10(w),fi*180/pi,'k');

A system is stable if the gain and phase margins are positive. 9.4 Stability analysis: (Gain margin, phase margin) Magnitude plot Phase plot Gain margin (GM) : The difference (in dB) between 0 dB and system gain, computed at the frequency where the phase is 180. Phase margin (PM) : The difference (in ) between the system phase and 180, computed at the frequency where the gain is 1 (log101=0). A system is stable if the gain and phase margins are positive.

Gain margin (GM) : Nyquist plot Phase margin (PM) : Margin calculations: Nyquist plot Gain margin (GM) : Phase margin (PM) :

Obtain Bode plots, find the gain and phase margins by MATLAB. Example 9.6: Obtain Bode plots, find the gain and phase margins by MATLAB. ) s ( R K: Control gain MATLAB: clc;clear;close all k=1;ng=2500;dg=conv([1 0],conv([1 5],[1 50]) ); go=tf(k*ng,dg) bode(go) margin(go) [gm,pm,wp,wg]=margin(go) MATLAB gives these results, gm=5.5, pm=31.7124, wg=15.8114 rad/s, wp=6.2184 rad/s

Reconsider Example 9.6. Calculate the gain and phase margins.

Relationship between the phase margin and damping ratio: 9.5 Compansators (Design in frequency domain) GM and M can be chosen as GM= 6 dB and PM=65 to design in frequency-domain. Relationship between the phase margin and damping ratio: Phase-lead companstor: Improve damping ratio Improve bandwith (faster response) Increase phase margin Phase-lag companstor: Improve steady-state error Decrease phase margin R(s)

Example 9.8: Reconsider Example 9.6. Design a compensator system and simulate results by MATLAB in time and frequency domain with/without the compensator.