4.1 Mathematical Expectation

Slides:



Advertisements
Similar presentations
Chapter 4 Mathematical Expectation.
Advertisements

Class notes for ISE 201 San Jose State University
CONTINUOUS RANDOM VARIABLES. Continuous random variables have values in a “continuum” of real numbers Examples -- X = How far you will hit a golf ball.
Today Today: More Chapter 3 Reading: –Please read Chapter 3 –Suggested Problems: 3.2, 3.9, 3.12, 3.20, 3.23, 3.24, 3R5, 3R9.
SOME STATISTICAL CONCEPTS Chapter 3 Distributions of Data Probability Distribution –Expected Rate of Return –Variance of Returns –Standard Deviation –Covariance.
Chris Morgan, MATH G160 February 3, 2012 Lecture 11 Chapter 5.3: Expectation (Mean) and Variance 1.
4.1 Mathematical Expectation
The role of probability in statistics In statistical inference, we want to make general statements about the population based on measurements taken from.
1 Dr. Jerrell T. Stracener EMIS 7370 STAT 5340 Probability and Statistics for Scientists and Engineers Department of Engineering Management, Information.
Calculating Expected Return
Chapter 5 Discrete Random Variables and Probability Distributions ©
1 Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering EMIS 7370/5370 STAT 5340 : PROBABILITY AND STATISTICS FOR SCIENTISTS AND ENGINEERS Systems.
Variance and Covariance
Chapter 5 Discrete Probability Distributions
The Mean of a Discrete RV The mean of a RV is the average value the RV takes over the long-run. –The mean of a RV is analogous to the mean of a large population.
§ 5.3 Normal Distributions: Finding Values. Probability and Normal Distributions If a random variable, x, is normally distributed, you can find the probability.
JMB Chapter 3 Lecture 1EGR Spring 2008 Slide 1 Defining Probabilities: Random Variables  Examples:  Out of 100 heart catheterization procedures.
Math 4030 – 6a Joint Distributions (Discrete)
EGR Joint Probability Distributions The probabilities associated with two things both happening, e.g. … –probability associated with the hardness.
Section 10.5 Let X be any random variable with (finite) mean  and (finite) variance  2. We shall assume X is a continuous type random variable with p.d.f.
President UniversityErwin SitompulPBST 4/1 Dr.-Ing. Erwin Sitompul President University Lecture 4 Probability and Statistics
1 Chapter 4 Mathematical Expectation  4.1 Mean of Random Variables  4.2 Variance and Covariance  4.3 Means and Variances of Linear Combinations of Random.
7-1 Chapter 7 Charles P. Jones, Investments: Analysis and Management, Tenth Edition, John Wiley & Sons Prepared by G.D. Koppenhaver, Iowa State University.
Chapter 7 Lesson 7.4a Random Variables and Probability Distributions 7.4: Mean and Standard Deviation of a Random Variable.
Chapter 4 Mathematical Expectation.
Covariance/ Correlation
Covariance/ Correlation
Sampling Distribution Estimation Hypothesis Testing
Continuous Probability Distributions Part 2
Variance and Covariance
Math a Discrete Random Variables
Descriptive Statistics: Numerical Methods
Statistical Hypothesis Testing
4.1 Mathematical Expectation
Statistical Hypothesis Testing
Reference: (Material source and pages)
Multinomial Experiments
Covariance/ Correlation
Covariance/ Correlation
Chapter 4: Mathematical Expectation:
4.1 Mathematical Expectation
Descriptive Statistics: Numerical Methods
Mean & Variance of a Distribution
Introduction to Probability & Statistics The Central Limit Theorem
Multinomial Experiments
Discrete Probability Distributions
Some Discrete Probability Distributions Part 2
CHAPTER 15 SUMMARY Chapter Specifics
Virtual University of Pakistan
4.1 Mathematical Expectation
Mean and Standard Deviation
Chapter 3: Random Variables and Probability Distributions
Covariance/ Correlation
Continuous Probability Distributions Part 2
Chapter 3: Random Variables and Probability Distributions
Statistical analysis and its application
Chapter 3: Random Variables and Probability Distributions
Chapter 5: Discrete Probability Distributions
Chapter 2. Random Variables
Multinomial Experiments
Multinomial Experiments
Chapter 3: Random Variables and Probability Distributions
Multinomial Experiments
Mean and Standard Deviation
Chapter 3: Random Variables and Probability Distributions
4.1 Mathematical Expectation
4.1 Mathematical Expectation
Discrete Random Variables and Probability Distributions
4.1 Mathematical Expectation
Mathematical Expectation
Presentation transcript:

4.1 Mathematical Expectation Example: Repair costs for a particular machine are represented by the following probability distribution: What is the expected value of the repairs? That is, over time what do we expect repairs to cost on average? x $50 $200 $350 P(X = x) 0.3 0.2 0.5 The expected value or mean of a probability distribution is the long-run theoretical average. JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

Expected Value – Repair Costs μ = mean of the probability distribution For discrete variables, μ = E(X) = ∑ x f(x) So, for our example, E(X) = 50(0.3) + 200(0.2) + 350(0.5) = $230 E(x) <weighted average> E(X) = 50(0.3) + 200(0.2) + 350(0.5) = $230 JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

Another Example – Investment By investing in a particular stock, a person can take a profit in a given year of $4000 with a probability of 0.3 or take a loss of $1000 with a probability of 0.7. What is the investor’s expected gain on the stock? X $4000 -$1000 P(X) 0.3 0.7 E(X) = $4000 (0.3) -$1000(0.7) = $500 X 4000 -1000 P(X) 0.3 0.7 E(X) = 4000 (0.3) -1000(0.7) = 500 JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

Expected Value - Continuous Variables For continuous variables, μ = E(X) = E(X) = ∫ x f(x) dx Vacuum cleaner example: problem 7 pg. 88 x, 0 < x < 1 f(x) = 2-x, 1 ≤ x < 2 0, elsewhere (in hundreds of hours.) { = 1 * 100 = 100.0 hours of operation annually, on average JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

Functions of Random Variables Ex 4.4. pg. 111: Probability of X, the number of cars passing through a car wash in one hour on a sunny Friday afternoon, is given by Let g(X) = 2X -1 represent the amount of money paid to the attendant by the manager. What can the attendant expect to earn during this hour on any given sunny Friday afternoon? E[g(X)] = Σ g(x) f(x) = Σ (2X-1) f(x) = (2*4-1)(1/12) +(2*5-1)(1/12) …+(2*9-1)(1/6) = $12.67 x 4 5 6 7 8 9 P(X = x) 1/12 1/4 1/6 Σ (2x-1) f(x) = 7(1/12) + 9(1/12) … + 17(1/6) = $12.67 JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

4.2 Variance of a Random Variable Recall our example: Repair costs for a particular machine are represented by the following probability distribution: What is the variance of the repair cost? That is, how might we quantify the spread of costs? x $50 200 350 P(X = x) 0.3 0.2 0.5 JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

Variance – Discrete Variables For discrete variables, σ2 = E [(X - μ)2] = ∑ (x - μ)2 f(x) = E (X2) - μ2 Recall, for our example, μ = E(X) = $230 Preferred method of calculation: σ2 = [E(X2)] – μ2 = 502 (0.3) + 2002 (0.2) + 3502 (0.5) – 2302 = $17,100 Alternate method of calculation: σ2 = E(X- μ)2 f(x) = (50-230)2 (0.3) + (200-230)2 (0.2) + (350-230)2 (0.5) = $17,100 E(X2) – μ2 = 502 (0.3) + 2002 (0.2) + 3502 (0.5) – 2302 = $17,100 JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

Variance - Investment Example By investing in a particular stock, a person can take a profit in a given year of $4000 with a probability of 0.3 or take a loss of $1000 with a probability of 0.7. What are the variance and standard deviation of the investor’s gain on the stock? E(X) = $4000 (0.3) -$1000 (0.7) = $500 σ2 = [∑(x2 f(x))] – μ2 = (4000)2(0.3) + (-1000)2(0.7) – 5002 = $5,250,000 σ = $2291.29 X 4000 -1000 P(X) 0.3 0.2 E(X) = 4000 (0.3) -1000(0.7) = 500 σ2 = ∑(x2 f(x)) –μ2 = (4000)2(0.3) + (-1000)2(0.7) – 5002 = $5,250,000 σ =$2291.29 JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

Variance of Continuous Variables For continuous variables, σ2 = E [(X - μ)2] =[∫ x2 f(x) dx] – μ2 Recall our vacuum cleaner example pr. 7 pg. 88 x, 0 < x < 1 f(x) = 2-x, 1 ≤ x < 2 0, elsewhere (in hundreds of hours of operation.) What is the variance of X? The variable is continuous, therefore we will need to evaluate the integral. { E(X) = ∫x2 f(x)dx – μ2 JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

Variance Calculations for Continuous Variables (Preferred calculation) What is the standard deviation? σ = 0.4082 hours [∫01 x3 dx + ∫12x2 (2-x)dx] – μ2 = x4/4 |10 + (2x3/3 – x4/4)|12 - 12 = 0.1667 σ = 0.4082 JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

Covariance/ Correlation A measure of the nature of the association between two variables Describes a potential linear relationship Positive relationship Large values of X result in large values of Y Negative relationship Large values of X result in small values of Y “Manual” calculations are based on the joint probability distributions Statistical software is often used to calculate the sample correlation coefficient (r) JMB Chapter 4 Lecture 1 EGR 252 Fall 2016

What if the distribution is unknown? Chebyshev’s theorem: The probability that any random variable X will assume a value within k standard deviations of the mean is at least 1 – 1/k2. That is, P(μ – kσ < X < μ + kσ) ≥ 1 – 1/k2 “Distribution-free” theorem – results are weak If we believe we “know” the distribution, we do not use Chebyshev’s theorem to characterize variability JMB Chapter 4 Lecture 1 EGR 252 Fall 2016