KC Nicolaou, JA Pfefferkorn, F Schuler, AJ Roecker, G-Q Cao, JE Casida 

Slides:



Advertisements
Similar presentations
Chapter 15 Multistep Syntheses
Advertisements

(ALKANALS & ALKANONES)
The Wittig reaction involves phosphorus ylides as the nucleophilic carbon species. The Wittig and Related Reactions of Phosphorus Stabilized Carbon Nucleophiles.
Alcohols: Structure & Synthesis
1 Protecting Groups Addition of organometallic reagents cannot be used with molecules that contain both a carbonyl group and N—H or O—H bonds. Carbonyl.
Solubility:  Solubility is a characteristic physical property referring to the ability for a given substance, the solute, to dissolve in a solvent. It.
An Introduction to Medicinal Chemistry 3/e COMBINATORIAL CHEMISTRY
Three scientists shared this year’s Nobel Prize in Chemistry for developing techniques in coupling reaction catalyzed by Pd (0) Richard Heck: University.
Novel Inhibitors of Indoleamine 2,3-Dioxygenase (IDO), a Target for Anti-Cancer Immunotherapy Introduction. Immunotherapy is a promising novel strategy.
Polymer Supported Reagents & Catalysts
Drug Design Geometrical isomerism Chirality
Chapter 17 Carboxylic Acids and Their Derivatives Nucleophilic
J. Perron,a B. Joseph,b J.-Y. Méroura
Bernard Masereela, Benoît Van den Eyndec and Raphaël Frédéricka
Organic Synthesis Michael Smith Chapter 12 Carey & Sundberg Chapter 8.
Berend van der Wildt, Micha M. M. Wilhelmus, Esther J. M
Organic Chemistry Second Edition Chapter 13 David Klein
Metagenomic Approaches for Exploiting Uncultivated Bacteria as a Resource for Novel Biosynthetic Enzymology  Micheal C. Wilson, Jörn Piel  Chemistry &
Alkenes: Reactions and Synthesis
Chapter 11 Alcohols and phenols
Synthetic Strategies.
Volume 22, Issue 3, Pages (March 2015)
Volume 11, Issue 4, Pages (April 2003)
Volume 14, Issue 5, Pages (May 2007)
News in Ubiquinone Biosynthesis
Kenneth Virgel N. Esguerra, Wenbo Xu, Jean-Philip Lumb  Chem 
Volume 21, Issue 11, Pages (November 2014)
Volume 12, Issue 2, Pages (February 2005)
Synthesis and Target Identification of Hymenialdisine Analogs
Nobuaki Matsumori, Toshiyuki Yamaguchi, Yoshiko Maeta, Michio Murata 
Chap. 4. C-C Bonds with Unstabilized Carbanions
Volume 20, Issue 3, Pages (March 2013)
Volume 8, Issue 1, Pages (January 2001)
Volume 1, Issue 3, Pages (September 2016)
Precursor-Directed Biosynthesis
Toward High-Throughput Synthesis of Complex Natural Product-Like Compounds in the Genomics and Proteomics Age  Prabhat Arya, Reni Joseph, Doug T.H Chou 
Volume 3, Issue 5, Pages (November 2017)
Chuck Merryman, Rachel Green  Chemistry & Biology 
Chemical synthesis and biological properties of pyridine epothilones*
Volume 13, Issue 9, Pages (September 2006)
Volume 13, Issue 9, Pages (September 2006)
Combinatorial peptide library methods for immunobiology research
M.Muralidhar Reddy, Kiran Bachhawat-Sikder, Thomas Kodadek 
Benjamin T Houseman, Milan Mrksich  Chemistry & Biology 
Volume 21, Issue 5, Pages (May 2014)
Volume 12, Issue 12, Pages (December 2005)
by Steven M. Banik, Jonathan William Medley, and Eric N. Jacobsen
Volume 15, Issue 7, Pages (July 2008)
by Zachary G. Brill, Huck K. Grover, and Thomas J. Maimone
Volume 18, Issue 6, Pages (June 2011)
Volume 16, Issue 10, Pages (October 2009)
Volume 17, Issue 11, Pages (November 2010)
M.Muralidhar Reddy, Kiran Bachhawat-Sikder, Thomas Kodadek 
Volume 12, Issue 1, Pages (January 2005)
Volume 16, Issue 10, Pages (October 2009)
Volume 14, Issue 4, Pages (April 2007)
Volume 19, Issue 12, Pages (December 2012)
A one-bead, one-stock solution approach to chemical genetics: part 2
A Quick Diversity-Oriented Amide-Forming Reaction to Optimize P-Subsite Residues of HIV Protease Inhibitors  Ashraf Brik, Ying-Chuan Lin, John Elder,
Volume 11, Issue 9, Pages (September 2004)
Hideki Kubota, Jongwon Lim, Kristopher M Depew, Stuart L Schreiber 
Katharine A Winans, Carolyn R Bertozzi  Chemistry & Biology 
Volume 12, Issue 6, Pages (June 2005)
Organic Chemistry Chapter 24
Volume 10, Issue 8, Pages (August 2003)
Volume 20, Issue 3, Pages (March 2013)
Conclusions & Prospects
Design, Synthesis, and Evaluation of Gluten Peptide Analogs as Selective Inhibitors of Human Tissue Transglutaminase  Felix Hausch, Tuula Halttunen, Markku.
Volume 9, Issue 8, Pages (August 2002)
Volume 19, Issue 6, Pages (June 2012)
Presentation transcript:

Combinatorial synthesis of novel and potent inhibitors of NADH:ubiquinone oxidoreductase  KC Nicolaou, JA Pfefferkorn, F Schuler, AJ Roecker, G-Q Cao, JE Casida  Chemistry & Biology  Volume 7, Issue 12, Pages 979-992 (December 2000) DOI: 10.1016/S1074-5521(00)00047-8

Figure 1 Role of NADH:ubiquinone oxidoreductase (complex I) on oxidative phosphorylation. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Figure 2 Representative natural and synthetic inhibitors of NADH:ubiquinone oxidoreductase. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Figure 3 Selected natural product inhibitors (7–18) of NADH:ubiquinone oxidoreductase isolated from Cubé resin and combinatorial library prototype (19). Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Figure 4 Structures and IC50 values of screening library. The synthesis of individual members is described in the schemes and references indicated. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Scheme 1 General strategy for the solid phase combinatorial synthesis of natural product-like small molecules as potential inhibitors of NADH:ubiquinone oxidoreductase. o-Prenylated phenols are cycloloaded onto a polystyrene-based selenenyl bromide resin to provide immobilized benzopyran scaffolds which are functionalized and then coupled to a second aromatic unit, thereby affording bridged structures 23. Library members are released from the resin by oxidation of the selenium moiety to the corresponding selenoxide which undergoes spontaneous syn-elimination to afford the desired benzopyran systems (19). Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Scheme 2 Representative procedures for the solid phase synthesis of amides, esters, and thioesters. Reagents and conditions: (a) 0.5 equivalent (equiv) of selenenyl bromide resin (1.1 mmol/g), CH2Cl2, 25°C, 20 min; (b) 10.0 equiv of LiOH, THF:H2O (20:1), 50°C, 48 h; (c) 10.0 equiv of (COCl)2, cat. DMF, CH2Cl2, 40°C, 2 h; (d) 10.0 equiv of piperazine, 1.0 equiv of 4-DMAP, CH2Cl2, 25°C, 12 h; (e) 5.0 equiv of 3,4-(OMe)2C6H3CH2XH (XO, NH, S), 15.0 equiv of Et3N, 1.0 equiv of 4-DMAP, CH2Cl2, 25°C, 12 h; (f) 5.0 equiv of 3,4-(OMe)2C6H3XH (XO, NH, S), 15.0 equiv of Et3N, 1.0 equiv of 4-DMAP, CH2Cl2, 25°C, 12 h; (g) 5.0 equiv of 3,4-(OMe)2C6H3CO2H, 5.0 equiv of DCC, 1.0 equiv of 4-DMAP, CH2Cl2, 25°C, 24 h; (h) 6.0 equiv of H2O2, THF, 25°C, 20 min. DCC=1,3-dicyclohexylcarbodiimide, 4-DMAP=4-(dimethylamino)pyridine, DMF=N,N-dimethylformamide. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Scheme 3 Representative procedures for the solid phase synthesis of ether (75), ester (29), and sulfonate (70) compounds. Reagents and conditions: (a) 0.5 equiv of selenenyl bromide resin (1.1 mmol/g), CH2Cl2, 25°C, 20 min; (b) 5.0 equiv of 3,4-dimethoxybenzyl chloride, 5.0 equiv of K2CO3, DMF, 60°C, 12 h; (c) 5.0 equiv of 3,4-dimethoxybenzoic acid, 5.0 equiv of DCC, 1.0 equiv of 4-DMAP, CH2Cl2, 25°C, 24 h; (d) 5.0 equiv of 3,4-dimethoxybenzenesulfonyl chloride, 10.0 equiv of Et3N, 1.0 equiv of 4-DMAP, CH2Cl2, 25°C, 12 h; (e) 6.0 equiv of H2O2, THF, 25°C, 20 min. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Scheme 4 Solid phase synthesis of thioamide (72) and thiazole (34) systems. Reagents and conditions: (a) 0.5 equiv of selenenyl bromide resin (1.1 mmol/g), CH2Cl2, 25°C, 20 min; (b) 10.0 equiv of n-BuLi (1.6 M in hexanes), THF, −78→0°C, 2 h; then 10.0 equiv of 3,4-dimethoxyphenylisothiocyanate, THF, −78→25°C, 1 h; (c) 6.0 equiv of H2O2, THF, 25°C, 20 min. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Figure 5 Summary of structure activity trends observed for benzopyran-based inhibitors of NADH:ubiquinone oxidoreductase. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Scheme 5 Solution phase synthesis of 3,4,5-trimethoxybenzyl ester (55) and modified pyran analogs and their biological activities. Reagents and conditions: (a) 2.0 equiv of 3-chloro-3-methyl-1-butyne, 2.0 equiv of K2CO2, 1.7 equiv of KI, 0.02 equiv of CuI, DMF, 65°C, 3 h, 88%; (b) Et2NPh, 195°C, 1 h, 100%; (c) 2.0 equiv of LiOH, THF:H2O (10:1), 40°C, 12 h, 95%; (d) 1.1 equiv of 3,4,5-trimethoxybenzyl alcohol, 1.2 equiv of DCC, 0.1 equiv of 4-DMAP, CH2Cl2, 25°C, 12 h, 89%; (e) 0.1 equiv of OsO4, 1.1 equiv of NMO, t-BuOH:THF:H2O (10:3:1), 25°C, 2 h, 71%; (f) 3.0 equiv of AcCl, 5.0 equiv of pyridine, CH2Cl2, 0→25°C, 1 h, 97%; (g) 5.0 equiv of triphosgene, 10.0 equiv of pyridine, CH2Cl2, 0°C, 1 h, 80%; (h) 1.1 equiv of NBS, DMSO:H2O (10:1), 0°C, 1 h, 80%; (i) 1.0 equiv of m-CPBA, 3.0 equiv of Na2CO3, CH2Cl2, 25°C, 24 h, 69%; (j) 0.2 equiv of 10% Pd-C, H2, MeOH:hexane (1:1), 25°C, 6 h, 96%. DMSO=methyl sulfoxide, NMO=4-methylmorpholine N-oxide, NBS=N-bromosuccinimide, m-CPBA=m-chloroperoxybenzoic acid. Compounds 133–139 were synthesized and assayed as racimates with the relative stereochemistry as shown. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Scheme 6 Synthesis of long chain 3,4-dimethoxyphenyl esters. Reagents and conditions: (a) 1.5 equiv of 3,4-dihydropyran, 0.1 equiv of PPTS, CH2Cl2, 25°C, 2 h; (b) 2.0 equiv of 3,4-dimethoxyphenol, 2.0 equiv of K2CO3, acetone, 40°C, 12 h; (c) 1.2 equiv of TsOH·H2O, THF:MeOH (9:1), 25°C, 1 h; (d) 0.5 equiv of 80, 10.0 equiv of Et3N, 1.0 equiv of 4-DMAP, CH2Cl2, 25°C, 12 h; (e) 6.0 equiv of H2O2, THF, 25°C, 20 min. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Scheme 7 Solution phase synthesis of 3,4,5-trimethoxyphenylketone (158) and analogs thereof. Reagents and conditions: (a) 1.2 equiv of 2-methyl-3-butyn-2-ol, 1.2 equiv of trifluoroacetic anhydride, 1.5 equiv of DBU, MeCN, 0°C, 6 h, 100%; (b) Et2NPh, 195°C, 1 h, 100%; (c) 3.0 equiv of BH3·THF, THF, 0→25°C, 2 h, 100%; (d) 1.1 equiv of Dess–Martin periodinane, CH2Cl2, 25°C, 1 h, 90%; (e) 1.1 equiv of n-BuLi (1.6 M in hexanes), THF, −78°C, 15 min; then 2.0 equiv of 155, THF, −78°C, 15 min, 45%; (f) 5.0 equiv of MeI, 2.0 equiv of NaH, THF, 0→25°C, 12 h, 85%; (g) 4.0 equiv of RONH2 (RH, Me, Bn), 5.0 equiv of K2CO3, EtOH, 75°C, 2 h, RH: 52%, RMe: 78%, RBn: 81%; (h) 3.0 equiv of Lawesson’s reagent, toluene, 100°C, 3 h, 42%; (i) 1.2 equiv of Tebbe reagent, THF, −40→0°C, 30 min, 88%; (j) 10.0 equiv of H4N2·H2O, 10.0 equiv of KOH, di(ethylene glycol), 245°C, 6 h, 21%; (k) 0.2 equiv of 10% Pd-C, H2, MeOH:hexane (1:1), 25°C, 6 h; (l) 2.0 equiv of 10% Pd-C, H2, MeOH, 25°C, 12 h. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Scheme 8 Solution phase synthesis of difluoro- and dichlorostyrene analogs 168 and 169. Reagents and conditions: (a) 2.0 equiv of Ph3P, CCl4, 60°C, 15 h, 60%; (b) 5.0 equiv of (EtO)2P(O)CHF2, 4.0 equiv of t-BuLi, DME, −78°C, 1 h; then 85°C, 15 h, 20%. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Scheme 9 Synthesis of 3,4,5-trimethoxyphenylthioether 178 and 3,4,5-trimethoxyphenylsulfone 179. Reagents and conditions: (a) 1.0 equiv of 3,4,5-trimethoxybenzyl chloride, 3.0 equiv of K2CO3, 0.2 equiv of TBAI, DMF, 25°C, 2 h, 74%; (b) 2.0 equiv of 3-chloro-3-methyl-1-butyne, 2.0 equiv of K2CO3, 1.7 equiv of KI, 0.02 equiv of CuI, DMF, 65°C, 3 h, 40%; (c) Et2NPh, 195°C, 1 h, 100%; (d) 2.5 equiv of OXONE, 2.5 equiv of NaHCO3, THF:H2O (2:1), 25%. TBAI=tetrabutylammonium iodide. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Figure 6 Lead compounds (and their IC50 values) selected for evaluation in cell-based assays. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Figure 7 Molecular modeling of deguelin (7), ester 55, and ketone 158. Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Chemistry & Biology 2000 7, 979-992DOI: (10 Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Chemistry & Biology 2000 7, 979-992DOI: (10 Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)

Chemistry & Biology 2000 7, 979-992DOI: (10 Chemistry & Biology 2000 7, 979-992DOI: (10.1016/S1074-5521(00)00047-8)