Find the exact values of the trigonometric functions {image} and {image} 1. 2. 3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26.

Slides:



Advertisements
Similar presentations
Unit 3: Trig Identities Jeopardy
Advertisements

Day 2 and Day 3 notes. 1.4 Definition of the Trigonometric Functions OBJ:  Evaluate trigonometric expressions involving quadrantal angles OBJ:  Find.
Day 3 Notes. 1.4 Definition of the Trigonometric Functions OBJ:  Evaluate trigonometric expressions involving quadrantal angles OBJ:  Find the angle.
1.5 Using the Definitions of the Trigonometric Functions OBJ: Give the signs of the six trigonometric functions for a given angle OBJ: Identify the quadrant.
Section 5.2 Trigonometric Functions of Real Numbers Objectives: Compute trig functions given the terminal point of a real number. State and apply the reciprocal.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 6.3 Properties of the Trigonometric Functions.
Trigonometry/Precalculus ( R )
QUADRANT I THE UNIT CIRCLE. REMEMBER Find the length of the missing side: x y x y x y Aim: Use the unit circle in order to find the exact value.
Mrs. Crespo Definition  Let θ be a non-quadrantal angle in standard position.  The reference angle for θ is the acute angle θ R that the terminal.
7.3 Trigonometric Functions of Angles. Angle in Standard Position Distance r from ( x, y ) to origin always (+) r ( x, y ) x y  y x.
Section 7.2 The Inverse Trigonometric Functions (Continued)
Find the period of the function y = 4 sin x
Trigonometric Functions of General Angles Section 3.4.
radius = r Trigonometric Values of an Angle in Standard Position 90º
Warm-Up 8/26 Simplify the each radical expression
+ 4.4 Trigonometric Functions of Any Angle *reference angles *evaluating trig functions (not on TUC)
Using Fundamental Identities To Find Exact Values. Given certain trigonometric function values, we can find the other basic function values using reference.
4.4 Trigonometric Functions of Any Angle
Properties of the Trigonometric Functions
Point P(x, y) is the point on the terminal arm of angle ,an angle in standard position, that intersects a circle. P(x, y) x y r  r 2 = x 2 + y 2 r =
Warm-Up 3/ Find the measure of
4.4 Trigonometric Functions of Any Angle. Ex.Find the sine, cosine, and tangent of if (-3,4) is a point on the terminal side of. (-3,4) -3 4 ? =5.
Copyright © by Holt, Rinehart and Winston. All Rights Reserved. Objectives Find coterminal and reference angles. Find the trigonometric function values.
EXAMPLE 1 Evaluate trigonometric expressions Find the exact value of (a) cos 165° and (b) tan. π 12 a. cos 165° 1 2 = cos (330°) = – 1 + cos 330° 2 = –
Trigonometric Ratios of Any Angle
4.4 Trig Functions of Any Angle Objectives: Evaluate trigonometric functions of any angle Use reference angles to evaluate trig functions.
Objective: Use unit circle to define trigonometric functions. Even and odd trig functions. Warm up 1.Find and. 2.Give the center and radius of a circle.
Objective: Finding trigonometric functions of any angle. Warm up Make chart for special angles.
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE
Trigonometry Section 7.6 Apply inverse trigonometry functions
Chapter 2 Trigonometry.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Warm Up Use trigonometric identities to simplify: csc ∙tan
Which of the following statements is true for this triangle?
Graphs of Trigonometric Functions
Bell Ringer How many degrees is a radian?
What are Reference Angles?
Objectives: Students will learn how to find Cos, Sin & Tan using the special right triangles.
Concept.
Sum and Difference Formulas
Sum and Difference Identities for the Sin Function
Use an addition or subtraction formula to find the exact value of the expression: {image} Select the correct answer: {image}
Evaluating Trigonometric Functions
Trigonometric Functions
2.3 Evaluating Trigonometric Functions for any Angle
Find sin 2x, cos 2x, and tan 2x from the given information: {image} Select the correct answer:
Which of the following points is on the unit circle
Trigonometric Functions of Any Angle (Section 4-4)
Unit 7B Review.
Reference Angle Reference angle: the positive acute angle that lies between the terminal side of a given angle θ and the x-axis Note: the given angle.
Objectives Students will learn how to use special right triangles to find the radian and degrees.
Properties of Trig Fcts.
Trigonometric Functions:
The Inverse Trigonometric Functions (Continued)
Double-Angle and Half-Angle Formulas 5.3
Solving Trigonometric Equations by Algebraic Methods
Properties of the Trigonometric Functions
Trigonometric Functions: Unit Circle Approach
Trig. Ratios in a Coordinate System
Double-Angle, Half-Angle Formulas
Build and Use Unit Circle
6-2 Trigonometry.
6.4 - Trig Ratios in the Coordinate Plane
Conversions, Angle Measures, Reference, Coterminal, Exact Values
Trig Functions of Any Angle
Analytic Trigonometry
5-3 The Unit Circle.
Properties of the Trigonometric Functions
Section 4.7.
Properties of the Trigonometric Functions
Presentation transcript:

Find the exact values of the trigonometric functions {image} and {image} 1. 2. 3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Find the exact values of the trigonometric functions {image} and {image} 1. 2. 3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Find the exact values of the trigonometric functions {image} and {image} 1. 2. 3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The terminal point determined by t is {image} Find sin t, cos t, and tan t. 1. 2. 3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Find the values of the trigonometric functions of t if {image} and the terminal point of t is in quadrant IV. {image} 1. 2. 3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50