Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Slides:



Advertisements
Similar presentations
Scott Aaronson Alex Arkhipov MIT
Advertisements

BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.
How Much Information Is In Entangled Quantum States? Scott Aaronson MIT |
The Learnability of Quantum States Scott Aaronson University of Waterloo.
Are Quantum States Exponentially Long Vectors? Scott Aaronson (who did and will have an affiliation) (did: IASwill: Waterloo) Distributions over n-bit.
Quantum Software Copy-Protection Scott Aaronson (MIT) |
Hawking Quantum Wares at the Classical Complexity Bazaar Scott Aaronson (MIT)
Multilinear Formulas and Skepticism of Quantum Computing Scott Aaronson UC Berkeley IAS.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
How Much Information Is In A Quantum State? Scott Aaronson MIT |
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
Pretty-Good Tomography Scott Aaronson MIT. Theres a problem… To do tomography on an entangled state of n qubits, we need exp(n) measurements Does this.
How to Solve Longstanding Open Problems In Quantum Computing Using Only Fourier Analysis Scott Aaronson (MIT) For those who hate quantum: The open problems.
Scott Aaronson Institut pour l'Étude Avançée Le Principe de la Postselection.
QMA/qpoly PSPACE/poly: De-Merlinizing Quantum Protocols Scott Aaronson University of Waterloo.
Computational Complexity and Physics Scott Aaronson (MIT) New Insights Into Computational Intractability Oxford University, October 3, 2013.
The Equivalence of Sampling and Searching Scott Aaronson MIT.
The Computational Complexity of Linear Optics Scott Aaronson and Alex Arkhipov MIT vs.
Quantum Computing with Noninteracting Bosons
From EPR to BQP Quantum Computing as 21 st -Century Bell Inequality Violation Scott Aaronson (MIT)
New Computational Insights from Quantum Optics Scott Aaronson.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson (MIT) Joint work with Alex Arkhipov.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs.
The Computational Complexity of Linear Optics Scott Aaronson (MIT) Joint work with Alex Arkhipov vs.
New Computational Insights from Quantum Optics Scott Aaronson Based on joint work with Alex Arkhipov.
University of Queensland
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Space complexity [AB 4]. 2 Input/Work/Output TM Output.
One time-travelling bit is as good as logarithmically many
Scott Aaronson (MIT) Forrelation A problem admitting enormous quantum speedup, which I and others have studied under various names over the years, which.
Department of Computer Science & Engineering University of Washington
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Space complexity [AB 4]. 2 Input/Work/Output TM Output.
Exploring the Limits of the Efficiently Computable Research Directions I Like In Complexity and Physics Scott Aaronson (MIT) Papers and slides at
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
Quantum Computing MAS 725 Hartmut Klauck NTU
Scott Aaronson (MIT) ThinkQ conference, IBM, Dec. 2, 2015 The Largest Possible Quantum Speedups H H H H H H f |0  g H H H.
Barriers in Quantum Computing (And How to Smash Them Through Closer Interactions Between Classical and Quantum CS) Day Classical complexity theorists,
Verification of BosonSampling Devices Scott Aaronson (MIT) Talk at Simons Institute, February 28, 2014.
Quantum Computation Stephen Jordan. Church-Turing Thesis ● Weak Form: Anything we would regard as “computable” can be computed by a Turing machine. ●
Scott Aaronson (MIT  UT Austin) Aspen Center for Physics, March 25, 2016 Joint work with Lijie Chen Complexity-Theoretic Foundations of Quantum Supremacy.
Scott Aaronson (MIT  UT Austin) Strachey Lecture, Oxford University May 24, 2016 Quantum Supremacy.
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson (MIT) Papers & slides at
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson (MIT  UT Austin) NYSC, West Virginia, June 24, 2016.
Scott Aaronson (UT Austin) Banff, September 8, 2016 Joint work with Lijie Chen Complexity-Theoretic Foundations of Quantum Supremacy Experiments QSamp.
Scott Aaronson (MIT) April 30, 2014
Scott Aaronson (UT Austin)
BosonSampling Scott Aaronson (University of Texas, Austin)
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Scott Aaronson (UT Austin)
Scott Aaronson (MITUT Austin)
Bio Scott Aaronson is David J. Bruton Centennial Professor of Computer Science at the University of Texas at Austin.  He received his bachelor's from Cornell.
Quantum Supremacy and its Applications
Lecture 10: Sketching S3: Nearest Neighbor Search
Three Questions About Quantum Computing
Scott Aaronson (MIT) Talk at SITP, February 21, 2014
Based on joint work with Alex Arkhipov
Certified Randomness from Quantum Supremacy Inimitability
Scott Aaronson (UT Austin)
Three Questions About Quantum Computing
BosonSampling Scott Aaronson (University of Texas, Austin)
Quantum Supremacy and its Applications (!)
Quantum Computing and the Quest for Quantum Computational Supremacy
Quantum Supremacy and its Applications (!)
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Quantum Supremacy and its Applications Inimitability
Scott Aaronson (UT Austin) Papers and slides at
Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity Lijie Chen Ryan Williams.
Presentation transcript:

Complexity-Theoretic Foundations of Quantum Supremacy Experiments QSamp Samp Scott Aaronson (UT Austin) Cornell University, November 27, 2017 Based on joint works with Alex Arkhipov (STOC’2011) and with Lijie Chen (CCC’2017) Papers and slides at www.scottaaronson.com

QUANTUM SUPREMACY |  #1 Application of quantum computing: Disprove the skeptics! (And the Extended Church-Turing Thesis) Forget for now about applications. Just concentrate on certainty of a quantum speedup over the best classical algorithm for some task

? Why Now? PostBQP PostBPP Google and IBM are currently in a race to build and demonstrate ~50-qubit superconducting QC chips 22-qubit chips demonstrated in the last year ~50-qubit chips apparently already fabricated, but calibrating, testing, etc. could take another year ? Coherence times should be tens of microseconds, allowing a few dozen layers of gates Probably won’t be enough to do anything useful, but maybe just enough to do something classically hard! PostBQP: where we allow postselection on exponentially-unlikely measurement outcomes PostBPP: Classical randomized subclass Theorem (A. 2004): PostBQP = PP PostBPP is in the polynomial hierarchy PostBQP PostBPP

The Sampling Approach Put forward by A The Sampling Approach Put forward by A.-Arkhipov 2011 (BosonSampling), Bremner-Jozsa-Shepherd 2011 (IQP Model), and others Consider problems where the goal is to sample from a desired distribution over n-bit strings Compared to problems with a single valid output (like Factoring), sampling problems can be Easier to solve with near-future quantum devices, and Easier to argue are hard for classical computers! (We “merely” give up on: practical applications, fast classical way to verify the result) PostBQP: where we allow postselection on exponentially-unlikely measurement outcomes PostBPP: Classical randomized subclass Theorem (A. 2004): PostBQP = PP PostBPP is in the polynomial hierarchy PostBQP PostBPP

Complexity and QM in One Slide P#P Oracle for Counting Problems State: Hope for an exponential speedup comes from “the magic of minus signs” Unitary transformations, e.g. PH Constant Number of NP Quantifiers H NP Efficiently Checkable Problems Measurement: BQP Bounded-Error Quantum Polynomial Time P(=BPP?) Efficiently Solvable Problems

Simple Example: Fourier Sampling H f |0 Using the #P-hardness, one can show that if the quantum computer’s output distribution could be exactly sampled in classical polynomial time, then P#P=BPPNP and hence the polynomial hierarchy would collapse to the third level Given a Boolean function the above circuit samples each z{0,1}n with probability #P-hard to approximate, even for z=0…0

BosonSampling (A.-Arkhipov 2011) A rudimentary type of quantum computing, involving only non-interacting photons passing through beamsplitters Even with 2 photons and 1 beamsplitter, we can get counterintuitive phenomena like the Hong-Ou-Mandel dip The permanent is #P-complete (Valiant 1979), enabling a similar hardness argument to what we saw for Fourier Sampling… In general, n-photon amplitudes are given by nn permanents:

Central Theorem of BosonSampling: Suppose one can sample a linear-optical device’s output distribution in classical polynomial time, even to 1/nO(1) error in variation distance. Then one can also estimate the permanent of a matrix of i.i.d. N(0,1) Gaussians in BPPNP Central Conjecture of BosonSampling: Gaussian permanent estimation is a #P-hard problem If so, then fast classical simulation would collapse PH Carolan et al. 2015: 6-photon BosonSampling in the lab! Alas, scaling to more photons is hard, because of the unavailability of deterministic single-photon sources Quantum supremacy may be achievable earlier with superconducting qubits—so let’s think about that

The Random Quantum Circuit Proposal Generate a quantum circuit C on n qubits in a nn lattice, with d layers of random nearest-neighbor gates Apply C to |0n and measure. Repeat T times, to obtain samples x1,…,xT from {0,1}n Apply a statistical test to x1,…,xT : check whether at least 2/3 of them have more the median probability (takes classical exponential time, which is OK for n40) Publish C. Challenge skeptics to generate samples passing the test in a reasonable amount of time

Our Strong Hardness Assumption There’s no polynomial-time classical algorithm A such that, given a uniformly-random quantum circuit C with n qubits and m>>n gates, Note: There is a polynomial-time classical algorithm that guesses with probability (just expand 0|nC|0n out as a sum of 4m terms, then sample a few random ones)

Theorem: Assume SHA. Then given as input a random quantum circuit C, with n qubits and m>>n gates, there’s no polynomial-time classical algorithm that even passes our statistical test for C-sampling w.h.p. Proof Sketch: Given a circuit C, first “hide” which amplitude we care about by applying a random XOR-mask to the outputs, producing a C’ such that Now let A be a poly-time classical algorithm that passes the test for C’ with probability 0.99. Suppose A outputs samples x1,…,xT. Then if xi =z for some i[T], guess that Violates SHA! Otherwise, guess that with probability

Time-Space Tradeoffs for Simulating Quantum Circuits Given a general quantum circuit with n qubits and m>>n two-qubit gates, how should we simulate it classically? “Schrödinger way”: Store whole wavefunction O(2n) memory, O(m2n) time n=40, m=1000: Feasible but requires TB of RAM “Feynman way”: Sum over paths O(m+n) memory, O(4m) time n=40, m=1000: Infeasible but requires little RAM Best of both worlds?

Theorem: Let C be a quantum circuit with n qubits and d layers of gates. Then we can compute each transition amplitude, x|C|y, in dO(n) time and poly(n,d) memory C1 C2 Proof: Savitch’s Theorem! Recursively divide C into two chunks, C1 and C2, with d/2 layers each. Then Can do better for nearest-neighbor circuits, or when more memory is available This algorithm still doesn’t falsify the SHA! Why not?

What About Errors? k bit-flip errors  deviation from the uniform distribution is suppressed by a 1/exp(k) factor. Without error-correction, can only tolerate a few errors. Will come down to numbers. Verification Last month, Pednault et al. from IBM put out a preprint demonstrating the use of our recursive approach to simulate 50 qubits on a classical computing cluster. Many commentators said this undercut the rationale for planned quantum supremacy experiments. Truth is more like the opposite!

Summary In the near future, we’ll likely be able to perform random quantum circuit sampling with ~50 qubits Central question: how do we verify that something classically hard was done? Quantum computing theorists would be urgently called upon to think about this, even if there were nothing theoretically interesting to say. But there is!