Kejadian Bebas dan Bersyarat Pertemuan 06

Slides:



Advertisements
Similar presentations
Pertemuan 03 Teori Peluang (Probabilitas)
Advertisements

1 Pertemuan 07 Hitung Peluang Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Pendugaan Parameter Nilai Tengah Pertemuan 13 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Analisis Varians/Ragam Klasifikasi Dua Arah Pertemuan 18 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Pengujian Parameter Regresi Ganda Pertemuan 22 Matakuliah: L0104/Statistika Psikologi Tahun: 2008.
Pengujian Hipotesis Nilai Tengah Pertemuan 15 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Copyright ©2005 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Regresi dan Korelasi Linear Pertemuan 19
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 04 Ukuran Pemusatan dan Penyebaran Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Uji Tanda dan Peringkat Bertanda Wilcoxon Pertemuan 25 Matakuliah: Statistika Psikologi Tahun: 2008.
Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
© 2011 Pearson Education, Inc
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Introduction to Probability and Statistics Thirteenth Edition Chapter 3 Probability and Probability Distributions.
Conditional Probability and Independence. Learning Targets 1. I can calculate conditional probability using a 2-way table. 2. I can determine whether.
5E Note 4 Statistics with Economics and Business Applications Chapter 3 Probability and Discrete Probability Distributions Experiment, Event, Sample space,
Pertemuan 03 Peluang Kejadian
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 06 Kejadian Bebas dan Bersyarat Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 03 Ukuran Pemusatan dan Lokasi Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 05 Ruang Contoh dan Peluang Matakuliah: I0134 –Metode Statistika Tahun: 2007.
1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 20 Time & Condition Clauses with Future reference Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Introduction to Probability and Statistics Chapter 4 Probability and Probability Distributions.
Probability.
Copyright ©2011 Nelson Education Limited. Probability and Probability Distributions CHAPTER 4 Part 2.
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Recap from last lesson Compliment Addition rule for probabilities
1 MATB344 Applied Statistics Chapter 4 Probability and Probability Distributions.
12/7/20151 Math b Conditional Probability, Independency, Bayes Theorem.
Introduction to Probability 1. What is the “chance” that sales will decrease if the price of the product is increase? 2. How likely that the Thai GDP will.
Probability. Rules  0 ≤ P(A) ≤ 1 for any event A.  P(S) = 1  Complement: P(A c ) = 1 – P(A)  Addition: If A and B are disjoint events, P(A or B) =
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 10 Sebaran Binomial dan Poisson Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Stat 1510: General Rules of Probability. Agenda 2  Independence and the Multiplication Rule  The General Addition Rule  Conditional Probability  The.
I can find probabilities of compound events.. Compound Events  Involves two or more things happening at once.  Uses the words “and” & “or”
STATISTICS 6.0 Conditional Probabilities “Conditional Probabilities”
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Sebaran Normal dan Normal Baku Pertemuan 11 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
5E Note 4 Honors Statistics Chapter 5 “Probability”
Probability Probability Day 4. Independent Practice Topic 3 packet pg
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
Concepts of Probability Introduction to Probability & Statistics Concepts of Probability.
MATB344 Applied Statistics
Table Pertemuan 10 Matakuliah : L0182 / Web & Animation Design
Peubah Acak Diskrit Pertemuan 07
Chapter 3: Probability Topics
Pertemuan 5 Probabilitas-1
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Probability and Discrete Probability Distributions
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Pertemuan 17 Pengujian Hipotesis
Chapter 4 Probability.
Pertemuan 13 Pendugaan Parameter Nilai Tengah
12.4 Probability of Compound Events
Pertemuan 13 Sebaran Seragam dan Eksponensial
Introduction to Probability and Statistics
Basic Concepts An experiment is the process by which an observation (or measurement) is obtained. An event is an outcome of an experiment,
Principles of Statistics
Statistics for IT Lecture 8,9: Introduction to Probability and
General Probability Rules
Chapter 1 Probability Spaces
Presentation transcript:

Kejadian Bebas dan Bersyarat Pertemuan 06 Matakuliah : L0104 / Statistika Psikologi Tahun : 2008 Kejadian Bebas dan Bersyarat Pertemuan 06

Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung Peluang Kejadian Bebas Bersyarat dan Teorema Bayes. 3 Bina Nusantara

Peluang kejadian bersyarat Kaidah perkalian dan kejadian bebas Outline Materi Peluang kejadian bersyarat Kaidah perkalian dan kejadian bebas Teorema Bayes Kaidah-kaidah penghitungan 4 Bina Nusantara

Conditional Probabilities The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as “given” Bina Nusantara

Example 1 P(A|B) = ½ P(A|not B) = ½ Toss a fair coin twice. Define A: head on second toss B: head on first toss P(A|B) = ½ P(A|not B) = ½ HH 1/4 HT P(A) does not change, whether B happens or not… A and B are independent! TH TT Bina Nusantara

Example 2 P(A|B) =P(2nd red|1st blue)= 2/4 = 1/2 A bowl contains five M&Ms®, two red and three blue. Randomly select two candies, and define A: second candy is red. B: first candy is blue. P(A|B) =P(2nd red|1st blue)= 2/4 = 1/2 P(A|not B) = P(2nd red|1st red) = 1/4 m m m m m P(A) does change, depending on whether B happens or not… A and B are dependent! Bina Nusantara

Defining Independence We can redefine independence in terms of conditional probabilities: Two events A and B are independent if and only if P(A|B) = P(A) or P(B|A) = P(B) Otherwise, they are dependent. Once you’ve decided whether or not two events are independent, you can use the following rule to calculate their intersection. Bina Nusantara

The Multiplicative Rule for Intersections For any two events, A and B, the probability that both A and B occur is P(A B) = P(A) P(B given that A occurred) = P(A)P(B|A) If the events A and B are independent, then the probability that both A and B occur is P(A B) = P(A) P(B) Bina Nusantara

Example 1 In a certain population, 10% of the people can be classified as being high risk for a heart attack. Three people are randomly selected from this population. What is the probability that exactly one of the three are high risk? Define H: high risk N: not high risk P(exactly one high risk) = P(HNN) + P(NHN) + P(NNH) = P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H) = (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1)= 3(.1)(.9)2 = .243 Bina Nusantara

P(high risk female) = P(HF) Example 2 Suppose we have additional information in the previous example. We know that only 49% of the population are female. Also, of the female patients, 8% are high risk. A single person is selected at random. What is the probability that it is a high risk female? Define H: high risk F: female From the example, P(F) = .49 and P(H|F) = .08. Use the Multiplicative Rule: P(high risk female) = P(HF) = P(F)P(H|F) =.49(.08) = .0392 Bina Nusantara

The Law of Total Probability Let S1 , S2 , S3 ,..., Sk be mutually exclusive and exhaustive events (that is, one and only one must happen). Then the probability of another event A can be written as P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) = P(S1)P(A|S1) + P(S2)P(A|S2) + … + P(Sk)P(A|Sk) Bina Nusantara

The Law of Total Probability S2…. S1 Sk A A Sk A  S1 P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) = P(S1)P(A|S1) + P(S2)P(A|S2) + … + P(Sk)P(A|Sk) Bina Nusantara

Bayes’ Rule Let S1 , S2 , S3 ,..., Sk be mutually exclusive and exhaustive events with prior probabilities P(S1), P(S2),…,P(Sk). If an event A occurs, the posterior probability of Si, given that A occurred is Bina Nusantara

Example From a previous example, we know that 49% of the population are female. Of the female patients, 8% are high risk for heart attack, while 12% of the male patients are high risk. A single person is selected at random and found to be high risk. What is the probability that it is a male? Define H: high risk F: female M: male We know: P(F) = P(M) = P(H|F) = P(H|M) = .49 .51 .08 .12 Bina Nusantara

Selamat Belajar Semoga Sukses. Bina Nusantara