Optics ‘Scrapbook’ for ERL Test Facility

Slides:



Advertisements
Similar presentations
MCDW 2008, JLAB, Dec 8-12, Multi-pass Droplet Arc Design Guimei WANG (Muons Inc./ODU) Dejan Trbojevic (BNL) Alex Bogacz (JLAB)
Advertisements

Recirculating pass optics V.Ptitsyn, D.Trbojevic, N.Tsoupas.
DR km DTC Lattice 7 July 2011 D. Rubin. DTC01 layout 1.Circumference = m, 712m straights 2.~ 6 phase trombone cells 3.54 – 1.92m long wigglers.
ALPHA Storage Ring Indiana University Xiaoying Pang.
LHeC Test Facility Meeting
Options for a 50Hz, 10 MW, Short Pulse Spallation Neutron Source G H Rees, ASTeC, CCLRC, RAL, UK.
(ISS) Topics Studied at RAL G H Rees, RAL, UK. ISS Work Areas 1. Bunch train patterns for the acceleration and storage of μ ± beams. 2. A 50Hz, 1.2 MW,
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
1 Low-energy RHIC electron Cooler (LEReC) cost estimate December 2, 2014.
Thomas Jefferson National Accelerator Facility Page 1 23 rd Annual HUGS Program June 2-20, 2008 CEBAF Overview HUGS08 June 3 CEBAF Overview HUGS08 June.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
Recent Progress Toward a Muon Recirculating Linear Accelerator S.A.Bogacz, V.S.Morozov, Y.R.Roblin 1, K.B.Beard 2, A. Kurup, M. Aslaninejad, C. Bonţoiu,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Alex Bogacz EIC14 Workshop, Jefferson Lab, March 20,
D. Trbojevic, N. Tsoupas, S. Tepikian, B. Parker, E. Pozdeyev, Y. Hao, D. Kayran, J. Beebe-Wang, C. Montag, V. Ptitsyn, and V. Litvinenko eRHIC and MeRHIC.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Muon Collider Design Workshop, BNL, December 1-3, 2009.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Alex Bogacz UITF Beam-line Modeling (2) UITF Mtg. JLAB,
Future Circular Collider Study Kickoff Meeting CERN ERL TEST FACILITY STAGES AND OPTICS 12–15 February 2014, University of Geneva Alessandra Valloni.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Accumulator & Compressor Rings with Flexible Momentum Compaction arccells MAP 2014 Spring Meeting, Fermilab, May 27-31, 2014 Y. Alexahin (FNAL APC)
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz Status and Plans for Linac and RLAs.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Status of Baseline Linac and RLAs Design.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 LHeC Workshop, Chavennes-de-Bogis, June 26, 2015 LHeC.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Muon Acceleration – RLA, FFAG and Fast Ramping.
Optics considerations for PS2 October 4 th, 2007 CARE-HHH-APD BEAM’07 W. Bartmann, M. Benedikt, C. Carli, B. Goddard, S. Hancock, J.M. Jowett, A. Koschik,
Optics solutions for the PS2 ring February 11 th, 2008 LIS Section Meeting Y. Papaphilippou.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Y. R. Roblin, NUFACT 2012, July JEMMRLA Jefferson.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Acceleration in.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Acceleration.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Recirculating Linac Acceleration  End-to-end.
LTR for ILC e- (eLTR) RF section solenoid section.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Alex.
WG2: Beam Dynamics, Optics and Instrumentation – Summary
FFAG Recirculation and Permanent Magnet Technology for ERL’s
Progress on the Linac and RLAs
Warm magnets for LHeC / Test Facility arcs
JLEIC simulations status April 3rd, 2017
PERLE - Current Accelerator Design
Options and Recommendations for TL and Dumps
Progress on the Linac and RLAs
‘Multi-pass-Droplet’ Experiment
Main magnets for PERLE Test Facility
Status of Linac and RLAs – Simulations
Muon RLA - Design Status and Simulations
Muon RLA - Design Status and New Options
Linac and RLAs – Overview of NF-IDS
Electron Ring Optics Design
LHC (SSC) Byung Yunn CASA.
Progress on the Linac and RLAs
Collider Ring Optics & Related Issues
Optics solutions for the PS2 ring
RLA WITH NON-SCALING FFAG ARCS
Negative Momentum Compaction lattice options for PS2
Optics and Layout of Alex Bogacz Workshop, Orsay, Feb. 23, 2017.
Accelerator and Interaction Region
Low Emittance Lattices
Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part II Alex Bogacz USPAS, Hampton, VA, Jan , 2011.
S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage
Muon RLA - Design Status and New Options
– Overview Alex Bogacz JLAB, Aug. 14, 2017.
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Continuous Electron Beam Accelerator Facility Overview
Muon RLA - Design Status and Simulations
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Booster to Ion Ring Transfer Line
Large Ion Booster Re-design Update
PERLE - Current Accelerator Design
Presentation transcript:

Optics ‘Scrapbook’ for ERL Test Facility Alex Bogacz November 13, 2012

Two passes ‘up’ + Two passes ‘down’ ERL-TF (300 MeV) - Layout 5 MeV DE = 75 MeV DE = 75 MeV DC = l/2 5 MeV Two passes ‘up’ + Two passes ‘down’ Alex Bogacz November 13, 2012

Two passes ‘up’ + Two passes ‘down’ ERL-TF (300 MeV) - Layout 5 MeV DE = 75 MeV DE = 75 MeV DC = l/2 5 MeV Two passes ‘up’ + Two passes ‘down’ Alex Bogacz November 13, 2012

Arc 1 Optics – FMC Lattice 7.09188 10 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 80 MeV 4×450 sector bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 quadrupoles (10 cm long) Q1 G[kG/cm] = -0.34 Q2 G[kG/cm] = 0.47 Q3 G[kG/cm] = -0.30 Q4 G[kG/cm] = -0.33 dipoles (40 cm long) B = 5.01 kGauss Alex Bogacz November 13, 2012

Arc 3 Optics – FMC Lattice 7.52109 10 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 230 MeV 8×22.50 sector bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 quadrupoles (15 cm long) Q1 G[kG/cm] = -0.40 Q2 G[kG/cm] = 1.37 Q3 G[kG/cm] = -1.10 Q4 G[kG/cm] = -0.43 dipoles (40 cm long) B = 7.47 kGauss Alex Bogacz November 13, 2012

Switchyard - Vertical Separation of Arcs Arc 1 (80 MeV) Arc 3 (230 MeV) Alex Bogacz November 13, 2012

Vertical Spreaders - Optics Spr. 1 (80 MeV) Spr. 3 (230 MeV) 3.93848 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 3.72387 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y vertical step I vertical step II vertical chicane Alex Bogacz November 13, 2012

Arc 1 Optics (80 MeV) – arc1.mdx 14.9688 20 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Isochronous Arc pathlength: 36 × lRF 2-step vert. Spreader 1800 Arc 2-step vert. Recombiner Spr. dipoles: 300 bends (1 rec. + 3 sec.) Lb = 30 cm B = 5 kGauss Arc dipoles : 4450 bends(sec.) Lb = 40 cm B = 5 kGauss Rec. dipoles: 300 bends (3 sec. + 1 rec.) Lb = 30 cm B = 5 kGauss quads: Lq = 10-15 cm G  0.6 kGauss/cm Alex Bogacz November 13, 2012

Arc 2 Optics (155 MeV) – arc2.mdx 14.9688 20 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Isochronous Arc pathlength: 36 × lRF 2-step vert. Spreader Magnetic field scaling (dipoles and quads) ‘Arc 2’ = ‘2’  ‘Arc 1’ 1800 Arc 2-step vert. Recombiner Spr. dipoles: 300 bends (1 rec. + 3 sec.) Lb = 30 cm B = 10 kGauss Arc dipoles : 4450 bends(sec.) Lb = 40 cm B = 10 kGauss Rec. dipoles: 300 bends (3 sec. + 1 rec.) Lb = 30 cm B = 10 kGauss quads: Lq = 10-15 cm G  1.2 kGauss/cm Alex Bogacz November 13, 2012

Arc 3 Optics (230 MeV) – arc3.mdx 14.9688 20 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Isochronous Arc pathlength: 36× lRF Chicane vert. Spreader Chicane vert. Recombiner 1800 Arc Spr. dipoles: 100 -200 -100 bends ( rec.) Lb = 30 cm B = 5 and 10 kGauss Arc dipoles : 822.50 bends(sec.) Lb = 40 cm B = 5 kGauss Rec. dipoles: 100 -200 -100 bends ( rec.) Lb = 30 cm B = 5 and 10 kGauss quads: Lq = 10-15 cm G  1.2 kGauss/cm Alex Bogacz November 13, 2012

Arc 4 Optics (305 MeV) – arc4.mdx 14.9688 20 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Isochronous Arc pathlength: 35.5 × lRF Chicane vert. Spreader Magnetic field scaling (dipoles and quads) ‘Arc 4’ = ‘4/3’  ‘Arc 3’ Chicane vert. Recombiner 1800 Arc Spr. dipoles: 100 -200 -100 bends ( rec.) Lb = 30 cm B = 6.7 and 13.4 kGauss Rec. dipoles: 100 -200 -100 bends ( rec.) Lb = 30 cm B = 6.7 and 13.4 kGauss Arc dipoles : 822.50 bends(sec.) Lb = 40 cm B = 6.7 kGauss quads: Lq = 10-15 cm G  1.6 kGauss/cm Alex Bogacz November 13, 2012

Linac 1 and 2 - Symmetized Optics Arc 2 7.4 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Arc 3 Linac 1 – linac1.mdx 155 MeV 230 MeV inj 7.4 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Arc 3 Arc 4 Linac 2 – linac2.mdx 230 MeV ext 305 MeV Alex Bogacz November 13, 2012

Linac 1 and 2 - Multi-pass ER Optics Alex Bogacz November 13, 2012

Summary ERL-TF at CERN Multi-pass linac Optics in ER mode ‘Test bed’ for SRF cavities at high current Multi-pass linac Optics in ER mode Choice of linac RF - 721 MHz SRF Linear lattice: 2-pass ‘up’ + 2-pass ‘down’ Arc Optics Choice Synchronous acceleration → Isochronous arcs Flexible Momentum Compaction Optics Complete Arc Architecture Vertical switchyard Matching sections: Linac-Switchyard-Arc ‘First cut’ Lattice design for ERL-TF Two Linacs + Four Arcs Alex Bogacz November 13, 2012