Chemical synthesis and biological properties of pyridine epothilones*

Slides:



Advertisements
Similar presentations
CARBON AND THE MOLECULAR DIVERSITY OF LIFE
Advertisements

NMR Spectroscopy Spectrometer -Hardware
Dr. Wolf's CHM 201 & The Wittig Reaction.
1 Chapter 4 Carbon and the Molecular Diversity of Life.
Carbon and the Molecular Diversity of Life
Common 1 H NMR Patterns 1. triplet (3H) + quartet (2H) -CH 2 CH 3 2. doublet (1H) + doublet (1H) -CH-CH- 3. large singlet (9H) t-butyl group 4. singlet.
Chromatography (Separations) Mass Spectrometry Infrared (IR) Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy X-ray Crystallography (visual solid.
Chapter 9 Aldehydes and Ketones Chemistry 20. Carbonyl group C = O Aldehydes Ketones Carboxylic acids Esters.
Section Spectroscopic Analysis of Amines
Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition Copyright © 2012 by Pearson Education, Inc. Chapter 12 Organic.
PINCER COMPLEXES A SPECIAL TOPIC. Pincer Complexes Complexes of mixed donor polydentate ligands pioneered by Shaw in mid-70s.
Structure-Based Computational Database Screening, In Vitro Assay, and NMR Assessment of Compounds that Target TAR RNA Kenneth E Lind, Zhihua Du, Koh Fujinaga,
Organic Synthesis O OCH3 O C OH C H NO2
Honors Project: Organic Chemistry
NMR Spectroscopy Dr. PALVE ANIL M. RAYAT SHIKSHAN SANSTHA’S
Organic Synthesis Michael Smith Chapter 12 Carey & Sundberg Chapter 8.
R W Grime Ripon Grammar School
Spectroscopy of Organic Compounds
Chapter 14 Alcohols, Phenols, Ethers, and Thiols
AP Biology Chapter 4 P58-64 Modeling Organic Molecules
Augmenting Vitamin D to Combat Genetic Disease
Alcohols, Ethers, and Thiols
Nuclear Magnetic Resonance (NMR) Spectroscopy
Functional Groups Definition: A structural feature of a molecule, consists of a specific arrangement of atoms, responsible for certain properties of.
Combinatorial chemistry
Foundations for Directed Alkaloid Biosynthesis
Bivalent inhibition of human β-tryptase
Volume 2, Issue 6, Pages (December 2012)
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Properties of Matter (1.5)
Properties of Matter (1.5)
Volume 14, Issue 11, Pages (November 2007)
Volume 14, Issue 9, Pages (September 2007)
Carbon and the Molecular Diversity of Life
and the Molecular Diversity of Life
KC Nicolaou, JA Pfefferkorn, F Schuler, AJ Roecker, G-Q Cao, JE Casida 
Steered Molecular Dynamics Simulations on the “Tail Helix Latch” Hypothesis in the Gelsolin Activation Process  Feng Cheng, Jianhua Shen, Xiaomin Luo,
Properties of Matter (1.5)
Volume 13, Issue 9, Pages (September 2006)
Volume 13, Issue 9, Pages (September 2006)
Alkenes and Alkynes Learning Objectives: Keywords:
Volume 13, Issue 4, Pages (April 2006)
Volume 18, Issue 10, Pages (October 2011)
Volume 2, Issue 6, Pages (December 2012)
Aryl ureas represent a new class of anti-trypanosomal agents
Targeting Apoptosis via Chemical Design
Functional Groups.
by Zachary G. Brill, Huck K. Grover, and Thomas J. Maimone
Volume 14, Issue 11, Pages (November 2007)
Organic Chemistry and the Importance of Carbon
Bending at Microtubule Interfaces
Volume 21, Issue 8, Pages v-vi (August 2014)
Interaction of Epothilone Analogs with the Paclitaxel Binding Site
Foundations for Directed Alkaloid Biosynthesis
Volume 12, Issue 1, Pages (January 2005)
Nuclear Magnetic Resonance (NMR)
Volume 19, Issue 12, Pages (December 2012)
Volume 11, Issue 9, Pages (September 2004)
Volume 8, Issue 4, Pages (April 2000)
Organic Chemistry Functional Groups.
Volume 7, Issue 6, Pages R147-R151 (June 2000)
Binding Affinity and Interaction of LL-37 with HLA-C
Structural Basis of Swinholide A Binding to Actin
Nuclear Magnetic Resonance (NMR)
Hoiamide A, a Sodium Channel Activator of Unusual Architecture from a Consortium of Two Papua New Guinea Cyanobacteria  Alban Pereira, Zhengyu Cao, Thomas.
Volume 11, Issue 4, Pages (April 2004)
The Structure of JNK3 in Complex with Small Molecule Inhibitors
The Chemical Biology of Human Vitamins
Pyridine Is Aromatic.
Bivalent inhibition of human β-tryptase
Presentation transcript:

Chemical synthesis and biological properties of pyridine epothilones* KC Nicolaou, R Scarpelli, B Bollbuck, B Werschkun, MMA Pereira, M Wartmann, K-H Altmann, D Zaharevitz, R Gussio, P Giannakakou  Chemistry & Biology  Volume 7, Issue 8, Pages 593-599 (August 2000) DOI: 10.1016/S1074-5521(00)00006-5

Figure 1 Molecular structures of Epo A and Epo B and designed pyridine epothilones B (1–7). Chemistry & Biology 2000 7, 593-599DOI: (10.1016/S1074-5521(00)00006-5)

Scheme 1 Synthesis of designed pyridyl epothilones 1–7. Reagents and conditions: (a) TsCl (1.5 equiv), Et3N (3.0 equiv), 4-DMAP (1.0 equiv), CH2Cl, 0–25°C, 1 h; (b) NaI (3.0 equiv), acetone, 25°C, 15 h, 75% (2 steps); (c) NaBH3CN (10.0 equiv), DMPU, 45°C, 40 h, 70%; (d) PdCl2(MeCN)2 (0.5 equiv), CuI (2.0 equiv), AsPh3 (1.0 equiv), 13a–g (2.5 equiv), DMF, 25°C, 1 h, 52–73%. Ts=p-toluenesulfonyl; 4-DMAP=4-dimethylaminopyridine, DMPU=N,N′-dimethylpropyleneurea. 7: Rf=0.71 (silica gel, ethyl acetate); [α]22D −77.5 (c 1.3, CHCl3); IR (thin film) νmax 3441, 2930, 1735, 1682, 1600, 1460, 1376, 1260, 1148, 1054 cm−1; 1H NMR (600 MHz, CDCl3) δ 8.35 (d, J=4.8 Hz, 1H, ArH), 7.08 (s, 1H, ArH), 6.95 (d, J=4.8 Hz, 1H, ArH), 6.56 (s, 1H, CHCCH3), 5.38 (bs, 1H, CHOH), 5.35 (dd, J=9.6, 1.8 Hz, 1H, CH2COOCH), 4.38–4.32 (m, 1H, CHOH), 3.74–3.70 (m, 1H, CHOH), 3.29–3.24 (m, 1H, C(O)CH(CH3)), 2.92 (bs, 1H, OH), 2.78 (dd, J=8.8, 3.5 Hz, 1H, CHOCCH3), 2.49 (dd, J=13.2, 11.0 Hz, 1H, CH2COOCH), 2.35 (s, 3H, ArCH3), 2.31 (m, 1H), 2.25 (dd, J=13.2, 2.6 Hz, 1H, CH2COOCH), 2.20–2.14 (m, 1H, (CH3)COCHCH2CHO), 2.02 (s, 3H, CHCCH3), 1.88 (s, 3H, C(CH3)OCHCH2), 1.78–1.70 (m, 2H, CH2C(CH3)OCH), 1.64–1.56 (m, 1H), 1.54–1.40 (m, 3H), 1.32–1.28 (m, 1H), 1.26 (s, 3H, C(CH3)2), 1.13 (d, J=6.6 Hz, 3H, CH(CH3), 1.05 (s, 3H, C(CH3)2), 0.97 (d, J=7.0 Hz, 3H, CH3CHCHOH); 13C NMR (150.9 MHz, CDCl3) δ 220.7, 170.7, 155.2, 148.7, 147.8, 140.8, 125.1, 124.7, 122.6, 76.3, 71.5, 62.2, 61.7, 60.3, 53.9, 39.6, 36.1, 32.9, 32.3, 30.7, 22.5, 22.1, 21.7, 21.1, 20.9, 17.7, 16.8, 15.8, 14.1; MALDI HRMS (DHB) m/z 524.2983, M+Na+ calcd. for C29H43NO6 524.2988. Chemistry & Biology 2000 7, 593-599DOI: (10.1016/S1074-5521(00)00006-5)

Scheme 2 Preparation of pyridine stannanes 13a–g. Reagents and conditions: (a) nBuLi (1.1 equiv), THF, −78°C, 1 h, then add nBu3SnCl (1.2 equiv), −78–25°C, 1 h, 40–89%. Chemistry & Biology 2000 7, 593-599DOI: (10.1016/S1074-5521(00)00006-5)

Figure 2 Stick model of compound 4 (carbon atoms in yellow) docked into an energy-refined model of tubulin. The backbone ribbon structure of tubulin is green. Arrows point at two residues that confer taxane and epothilone resistance (β270 and β274) and at one residue (β21) that makes a favorable hydrophobic contact with the 5-methyl group of the pyridine ring of compound 4. Chemistry & Biology 2000 7, 593-599DOI: (10.1016/S1074-5521(00)00006-5)