Quantum Computing and the Limits of the Efficiently Computable

Slides:



Advertisements
Similar presentations
How Much Information Is In Entangled Quantum States? Scott Aaronson MIT |
Advertisements

Quantum Software Copy-Protection Scott Aaronson (MIT) |
NP-complete Problems and Physical Reality
An Invitation to Quantum Complexity Theory The Study of What We Cant Do With Computers We Dont Have Scott Aaronson (MIT) QIP08, New Delhi BQP NP- complete.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
BQP PSPACE NP P PostBQP Limits on Efficient Computation in the Physical World Scott Aaronson MIT.
Computational Intractability As A Law of Physics
The Computational Complexity of Linear Optics Scott Aaronson and Alex Arkhipov MIT vs.
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson MIT.
New Computational Insights from Quantum Optics Scott Aaronson.
Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs.
Quantum Computing and the Limits of the Efficiently Computable
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson MIT.
Scott Aaronson (MIT) Based on joint work with John Watrous (U. Waterloo) BQP PSPACE Quantum Computing With Closed Timelike Curves.
Scott Aaronson (MIT) The Limits of Computation: Quantum Computers and Beyond.
University of Queensland
Copyright © CALTECH SCOTT AARONSON Massachusetts Institute of Technology QUANTUM COMPUTING AND THE LIMITS OF THE EFFICIENTLY COMPUTABLE.
THE QUANTUM COMPLEXITY OF TIME TRAVEL Scott Aaronson (MIT)
Computational Phenomena in Physics Scott Aaronson MIT.
Exploring the Limits of the Efficiently Computable Scott Aaronson (MIT) Papers & slides at
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson MIT.
Dominique Unruh 3 September 2012 Quantum Cryptography Dominique Unruh.
Computability and Modeling Computation What are some really impressive things that computers can do? –Land the space shuttle (and other aircraft) from.
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson (MIT)
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson MIT.
Halting Problem Introduction to Computing Science and Programming I.
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson MIT.
Verification of BosonSampling Devices Scott Aaronson (MIT) Talk at Simons Institute, February 28, 2014.
The Kind of Stuff I Think About Scott Aaronson (MIT) LIDS Lunch, October 29, 2013 Abridged version of plenary talk at NIPS’2012.
Quantum Computation Stephen Jordan. Church-Turing Thesis ● Weak Form: Anything we would regard as “computable” can be computed by a Turing machine. ●
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson (MIT  UT Austin) NYSC, West Virginia, June 24, 2016.
Theory of Computation. Introduction We study this course in order to answer the following questions: What are the fundamental capabilities and limitations.
Limits on Efficient Computation in the Physical World
Introduction to Computing Science and Programming I
Computational problems, algorithms, runtime, hardness
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Scott Aaronson Computer Science, UT Austin AAAS Meeting, Feb. 19, 2017
Scott Aaronson (MIT) QIP08, New Delhi
Quantum Computing and the Limits of the Efficiently Computable
Scott Aaronson Associate Professor, EECS
Bio Scott Aaronson is David J. Bruton Centennial Professor of Computer Science at the University of Texas at Austin.  He received his bachelor's from Cornell.
Quantum Computing and the Limits of the Efficiently Computable
Scott Aaronson (Computer Science) Explore UT Day March 4, 2017
Quantum Computing and the Limits of the Efficiently Computable
NP-Completeness Yin Tat Lee
Intro to Theory of Computation
Black Holes, Firewalls, and the Limits of Quantum Computers
Three Questions About Quantum Computing
Scott Aaronson (UT Austin) October 28, 2016
Black Holes, Firewalls, and the Limits of Quantum Computers
Quantum Computing and the Limits of the Efficiently Computable
Three Questions About Quantum Computing
Scott Aaronson (UT Austin) Lakeway Men’s Breakfast Club April 19, 2017
3rd Lecture: QMA & The local Hamiltonian problem (CNT’D)
Halting Problem.
Computational Complexity and Fundamental Physics
Quantum Computing and the Quest for Quantum Computational Supremacy
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Quantum Computing and the Limits of the Efficiently Computable
The Computational Complexity of Decoding Hawking Radiation
Scott Aaronson (UT Austin) Bazaarvoice May 24, 2017
What Google Won’t Find: The Ultimate Physical Limits of Search
CPS 173 Computational problems, algorithms, runtime, hardness
What Quantum Computing Isn’t
NP-Completeness Yin Tat Lee
Scott Aaronson (UT Austin) Papers and slides at
Quantum Computation – towards quantum circuits and algorithms
CS 150: Computing - From Ada to the Web
Data Structures and Algorithms
Data Structures and Algorithms
Presentation transcript:

Quantum Computing and the Limits of the Efficiently Computable GO FAST GO FAST GO FAST Thanks so much for inviting me to this beautiful place! When I typed “quantum computer” into Google Image Search, that’s the first picture that came up. That’s apparently what they look like. (I should warn you that I’m a theorist rather than an engineer.) Scott Aaronson MIT

Things we never see… Warp drive Perpetuum mobile Übercomputer GOLDBACH CONJECTURE: TRUE NEXT QUESTION Warp drive Perpetuum mobile Übercomputer The (seeming) impossibility of the first two machines reflects fundamental principles of physics—Special Relativity and the Second Law respectively So what about the third one? The starting point for this talk is, there are certain technologies we never see that would be REALLY cool if we had them. The first is warp drive. For this crowd especially, I can say: what’s taking you so long? The second is perpetual-motion machines. The third is what I like to call the Ubercomputer. This is a machine where you feed it any well-posed mathematical question and it instantly tells you the answer. Currently, even with the fastest computers today, if you ask them to prove a hard theorem, they could do it eventually, but it might take longer than the age of the universe. That’s why there are still human mathematicians. In this talk, I want to convince you that the impossibility of ubercomputers is also something physicists should think about, and also something that may have implications for physics.

Some would say Alan Turing & friends already answered this question in the 1930s No computer program can infallibly decide the truth or falsehood (or even the provability) of arbitrary mathematical statements! The big question is whether P=NP. Literally a million dollar question – if you solve it, you get a million dollars from the Clay Math Institute. In my opinion, it’s the most important of all 7 Clay problems – since if P=NP, then probably you could not only solve that one problem, but also the other six. For you would simply program your computer to find the proofs for you. I should mention, because of this blog I write, I get claims to solve the P vs. NP problem in my inbox every other week or so. The most recent *relatively-serious* claim was this summer, when this guy Vinay Deolalikar got all over the news claiming to have proved P!=NP. I was on vacation, but eventually it got to the point where I said, listen, if he’s right, I’ll supplement his million-dollar prize by $200,000. I took a lot of flak for that, but in case you’re wondering, the end result was I didn’t have to pay. This is still an open problem, one of the hardest and most profound open problems in mathematics. But what about “merely” searching all possible proofs with (say) 109 symbols or fewer? Can that be done in a way that avoids exhaustive search?

NP: Nondeterministic Polynomial-Time This sounds like (literally) a $1,000,000 question: P=NP? NP: Nondeterministic Polynomial-Time P: Polynomial-Time If there actually were a machine with [running time] ~Kn (or even only with ~Kn2), this would have consequences of the greatest magnitude. —Gödel to von Neumann, 1956 The big question is whether P=NP. Literally a million dollar question – if you solve it, you get a million dollars from the Clay Math Institute. In my opinion, it’s the most important of all 7 Clay problems – since if P=NP, then probably you could not only solve that one problem, but also the other six. For you would simply program your computer to find the proofs for you. I should mention, because of this blog I write, I get claims to solve the P vs. NP problem in my inbox every other week or so. The most recent *relatively-serious* claim was this summer, when this guy Vinay Deolalikar got all over the news claiming to have proved P!=NP. I was on vacation, but eventually it got to the point where I said, listen, if he’s right, I’ll supplement his million-dollar prize by $200,000. I took a lot of flak for that, but in case you’re wondering, the end result was I didn’t have to pay. This is still an open problem, one of the hardest and most profound open problems in mathematics.

Extended Church-Turing Thesis However, an important presupposition underlying P vs. NP is the... Extended Church-Turing Thesis “Any physically-realistic computing device can be simulated by a deterministic or probabilistic Turing machine, with at most polynomial overhead in time and memory” So how sure are we of this thesis? Have there been serious challenges to it?

Old proposal: Dip two glass plates with pegs between them into soapy water. Let the soap bubbles form a minimum Steiner tree connecting the pegs—thereby solving a known NP-hard problem “instantaneously”

Ah, but what about quantum computing? (you knew it was coming) Quantum mechanics: “Probability theory with minus signs” (Nature seems to prefer it that way)

Quantum Computing A quantum state of n qubits takes 2n complex numbers to describe: Chemists and physicists knew that for decades, as a practical problem! In the 1980s, Feynman, Deutsch, and others had the amazing idea of building a new type of computer that could overcome the problem, by itself exploiting the exponentiality inherent in QM Actually building a QC: Damn hard, because of decoherence. (But seems possible in principle!)

Any hope for a speedup rides on the magic of interference Popularizers Beware: A quantum computer is NOT like a massively-parallel classical computer! Exponentially-many basis states, but you only get to observe one of them Any hope for a speedup rides on the magic of interference

BQP (Bounded-Error Quantum Polynomial-Time): The class of problems solvable efficiently by a quantum computer, defined by Bernstein and Vazirani in 1993 Interesting Shor 1994: Factoring integers is in BQP NP NP-complete P Factoring BQP

But factoring is not believed to be NP-complete! And today, we don’t believe BQP contains all of NP (though not surprisingly, we can’t prove that it doesn’t) Bennett et al. 1997: “Quantum magic” won’t be enough If you throw away the problem structure, and just consider an abstract “landscape” of 2n possible solutions, then even a quantum computer needs ~2n/2 steps to find the correct one (That bound is actually achievable, using Grover’s algorithm!) So, is there any quantum algorithm for NP-complete problems that would exploit their structure?

Quantum Adiabatic Algorithm (Farhi et al. 2000) Hf Hamiltonian with easily-prepared ground state Ground state encodes solution to NP-complete problem Problem: “Eigenvalue gap” can be exponentially small

Nonlinear variants of the Schrödinger Equation Abrams & Lloyd 1998: If quantum mechanics were nonlinear, one could exploit that to solve NP-complete problems in polynomial time 1 solution to NP-complete problem No solutions

Relativity Computer DONE But while we’re waiting for scalable quantum computers, we can also base computers on that other great theory of the 20th century, relativity! The idea here is simple: you start your computer working on some really hard problem, and leave it on earth. Then you get on a spaceship and accelerate to close to the speed of light. When you get back to earth, billions of years have passed on Earth and all your friends are long dead, but at least you’ve got the answer to your computational problem. I don’t know why more people don’t try it!

STEP 1 Zeno’s Computer STEP 2 Time (seconds) STEP 3 STEP 4 Another of my favorites is Zeno’s computer. The idea here is also simple: this is a computer that would execute the first step in one second, the next step in half a second, the next in a quarter second, and so on, so that after two seconds it’s done an infinite amount of computation. Incidentally, do any of you know why that WOULDN’T work? The problem is that, once you get down to the Planck time of 10^{-43} seconds, you’d need so much energy to run your computer that fast that, according to our best current theories, you’d exceed what’s called the Schwarzschild radius, and your computer would collapse to a black hole. You don’t want that to happen. STEP 3 STEP 4 STEP 5

“The No-SuperSearch Postulate” There is no physical means to solve NP-complete problems in polynomial time. Includes PNP as a special case, but is stronger No longer a purely mathematical conjecture, but also a claim about the laws of physics If true, would “explain” why adiabatic systems have small spectral gaps, the Schrödinger equation is linear, closed timelike curves don’t exist...

Some of My Recent Research BosonSampling (with Alex Arkhipov): A proposal for a rudimentary optical quantum computer, which doesn’t seem useful for anything (e.g. breaking codes), but does seem hard to simulate using classical computers Computational Complexity of Decoding Hawking Radiation: Building on a striking recent proposal by Harlow and Hayden—that part of the resolution of the black hole information problem might be that reconstructing the infalling information from the Hawking radiation would require an exponentially long computation