Jar Testing of Chemical Dosages

Slides:



Advertisements
Similar presentations
EcoTherm Plus WGB-K 20 E 4,5 – 20 kW.
Advertisements

1 A B C
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
5.1 Rules for Exponents Review of Bases and Exponents Zero Exponents
Chemical Quantities or
The Concentration of Substances
Solutions Part II DHS Chemistry Chapter 15.
AP STUDY SESSION 2.
1
& dding ubtracting ractions.
Addition and Subtraction Equations
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry Properties of Solutions.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry Properties of Solutions.
David Burdett May 11, 2004 Package Binding for WS CDL.
Chemical Quantities or
Create an Application Title 1Y - Youth Chapter 5.
Process a Customer Chapter 2. Process a Customer 2-2 Objectives Understand what defines a Customer Learn how to check for an existing Customer Learn how.
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
2.11.
Chapter 14 Section 14.2 Solution Concentration
INTRAVENOUS DOSAGE CALCULATIONS TUTORIAL.
The 5S numbers game..
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
Break Time Remaining 10:00.
The basics for simulations
A sample problem. The cash in bank account for J. B. Lindsay Co. at May 31 of the current year indicated a balance of $14, after both the cash receipts.
PP Test Review Sections 6-1 to 6-6
Look at This PowerPoint for help on you times tables
TCCI Barometer March “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Making Solutions Biotechnology I.
Entry Task: April 27th Friday
8.4 Percent Concentration
1..
Adding Up In Chunks.
Mathematical Aspects of Intravenous Therapy
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
Chapter Six Study Guide.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
2011 WINNISQUAM COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=1021.
Before Between After.
2011 FRANKLIN COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=332.
Subtraction: Adding UP
Stoichiometry.
: 3 00.
5 minutes.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Problem Solving using Conversion Factors
Static Equilibrium; Elasticity and Fracture
Converting a Fraction to %
Clock will move after 1 minute
PSSA Preparation.
Intravenous Solutions, Equipment, and Calculations
Select a time to count down from the clock above
Copyright Tim Morris/St Stephen's School
1.step PMIT start + initial project data input Concept Concept.
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Concentration of Solutions and the Concentration/Volume Relationship Prepared By Michigan Department of Environmental Quality Operator Training and Certification.
Pounds Formula Prepared By Michigan Department of Environmental Quality Operator Training and Certification Unit.
PHOSPHORUS REMOVAL FOR LAGOON OPERATORS WHY THE CONCERN OVER P.
Jar Testing of Chemical Dosages
Presentation transcript:

Jar Testing of Chemical Dosages Prepared By Michigan Department of Environmental Quality Operator Training and Certification Unit

Jar Testing Determination of most effective chemical Determination of most effective dosage Determination of optimum point of application Evaluation of polymers

Jar Testing Equipment Needed: Gang Stirrer 6 Graduated Beakers, 1500 ml 2 Graduated Pipets, 10 ml 1 Graduated Cylinder, 1000 ml Scale for weighing chemicals Analytical Equipment

Jar Testing Preparation of Stock Solutions For alum, lime, other dry materials: Use a 1 % solution. Dissolve 10 grams into 1000 ml distilled water. (1 ml = 10 mg/l in 1000 ml)

Preparation of Stock Solutions For Ferric Chloride, other liquid materials: Use a 1 % solution. Obtain % solution and specific gravity from supplier. Dilute appropriate volume up to 1000 ml to make a 1 % (10,000 mg/L) solution. (1ml=10 mg/l in 1000 ml)

Solution Dilution Have 45 % Ferric Chloride Solution (Specific Gravity 1.49) Need 1000 mls of a 1 % (10,000 mg/L) Sol. C1 X V1 = C2 X V2 C1 = 45 % (weighs 1.49 grams/ml) V1 = ? ml C2 = 1 % (weighs 1.00 grams/ml V2 = 1000 ml 45 % X 1.49 X V1 = 1 % X 1000 ml 1 % X 1000 ml 45 % X 1.49 V1 = = 14.91 ml

Jar Testing Preparation of Stock Solutions For Dry or Liquid Polymers: Use a 0.01 % (100 mg/L) solution. Weigh 0.1 gram and dissolve in 1000 ml distilled water. (1 ml = 0.1 mg/l in 1000 ml)

Jar Testing Calculations 1000 ml Blank 5 mg/L 10 mg/L 15 mg/L 20 mg/L 25 mg/L Calculate the volume of a 1 % Ferric Chloride solution that would be added to get the dosage required. 1% = 10,000 mg/L 10,000 mg/L X ? ml = 5 mg/L X 1000 ml 10 X 0.1 = 1.0 ml 15 X 0.1 = 1.5 ml 20 X 0.1 = 2.0 ml 25 X 0.1 = 2.5 ml ? ml = 5 mg/L X 1000 ml 10,000 mg/L ? ml = 5 X 0.1 = 0.5 ml

Jar Testing Calculations A jar test indicates that the required amount of phosphorus removal can be achieved using a dosage of 3 ml of a 1% ferric chloride solution in a liter of wastewater. What is the dosage in mg/L? C1 X V1 = C2 X V2 10,000 mg/L X 3 ml = ? mg/L X 1000 ml 10,000 mg/L X 3 ml 1000 ml = 30 mg/L

Jar Testing Procedure Using the 1000 ml graduated cylinder, add 1000 ml wastewater to each beaker. Using the graduated pipets, dose each beaker with the desired concentration of metal salt or polymer, increasing concentration from left to right. Operate stirrer to simulate plant process. Determine best dosage level by analysis of supernatant

Gang Stirrer Addition of Chemicals Rapid Mix Slow Mix - Flocculate Settle

Determine which dosage is best for meeting requirements

Chemical Handling lbs/day = MGD X 8.34 lbs/gal X mg/L After jar testing has been used to determine best chemical dosage in mg/L, pounds of chemical needed per day into a given flow or volume can be calculated. lbs/day = MGD X 8.34 lbs/gal X mg/L ie) A dosage of 25 mg/L Ferric Chloride is needed. The flow to be treated is 350,000 gallons per day. How many lbs of Ferric Chloride will have to be fed each day? lbs/D = 0.35 MGD X 8.34 lbs/gal X 25 mg/L = 73 lbs/D FeCL3

Chemical Handling Specific Gravity Given lbs/d of dry chemical to feed, need to calculate the gallons of solution to feed. Specific Gravity Specific Gravity = the number of times heavier or lighter the solution is than water 1 gallon of water weighs 8.34 lbs Specific gravity of water = 1.000

Specific Gravity If a solution has a Specific Gravity of 1.510, then this solution is 1.510 times heavier than water. 8.34 lbs/gal X 1.510 = 12.59 lbs/gal A solution with a Specific Gravity of 0.750 would weigh: 8.34 lbs/gal X 0.750 = 6.255 lbs/gal

Obtain S.G. from Supplier or by Using a Hydrometer

Chemical Handling 35 lbs dry chem 35 % = 35 per 100 35 % = Strength of Concentrated Solutions are usually given as Percent by Weight 35 % = 35 lbs dry chem 100 lbs solution 35 % = 35 per 100 In 100 lbs of a 35 % solution there are 35 lbs of dry chemical

If the weight of a gallon of solution is known, the weight of dry chemical in each gallon of the solution can be calculated: A 40% solution has a specific gravity of 1.43 A. Determine the weight of a gallon of the solution. 8.34 lbs/gallon X 1.43 = 11.93 lbs per gallon liquid B. Determine the lbs of dry chemical in each gallon. 11.93 lbs X = 4.77 lbs dry chem/ gal 40 lbs dry chem 100 lbs solution OR 11.93 lbs X = 4.77 lbs dry chem/ gal 0.40

Chemical Handling lbs/day dry chem needed lbs dry chem / gal Feed Rates If the lbs per day of chemical to be fed is known, and we know the pounds of dry chemical in each gallon of the solution, the gallons per day of solution to be fed can be calculated. lbs/day dry chem needed lbs dry chem / gal = gal/day soln to be fed

Chemical Handling ie) 150 lbs per day ferric chloride are to be fed. The solution to be used is 38% with a specific gravity of 1.413. Calculate the gallons of solution to feed each day. 8.34 lbs/gal X 1.413 = 11.78 lbs/gal 0.38 X 11.78 lbs/gal = 4.48 lbs dry chem/gal 150 lbs/d dry chem needed 4.48 lbs dry chem/gal = 33.5 gal/day

Chemical Handling Pumping Rate Calculations Given gallons per day of chemical needed, calculate gallons per minute Gal Day X 1 Day 24 Hrs 1 Hr 60 Min = Min

Calibration of Chemical Feed Pump 1. Set pump at known setting 2. Start pump and collect at the application point a measured amount in a known period of time. 3. Repeat for various settings. 4. Convert to needed units. mls Sec X 1 Gal 3785 mls 60 Sec Min = Gal

Chemical Feed Summary 1. Determine lbs/day of dry chemical needed. 2. Determine the weight (lbs/gal) of the soln. 3. Determine weight of dry chem in each gallon. 4. Determine gallons per day to be fed. 5. To Determine pumping rate in gallons/minute: mg/L X MGD X 8.34 lbs/gal = lbs/d dry chem 8.34 lbs/gal X Sp.Gr. = lbs/gal (liquid weight) lbs/gal (liquid wt) X % soln = lbs dry/gallon Lbs dry needed per day = gal/day to be fed lbs dry/gallon gal Day X 1 Day 24 Hrs 1 Hr 60 Min = Gal Min

Chemical Handling Calculations Example Problem #1 Jar Test Results 23 mg/L FeCl3 Dosage Needed Wastewater Flow 300,000 gallons per day Ferric Chloride Solution Specific Gravity 1.500 Concentration 45 % Work Calculations on Separate Paper Answers Given on Next Slides 1. Calculate the pounds per day of FeCl3 that must be added to the wastewater flow. 2. Calculate the weight in pounds of a gallon of the FeCl3 solution. 3. Calculate the pounds of dry FeCl3 per gallon of the solution. 4. Calculate the number of gallons of the FeCl3 solution that must be fed per day. 5. How many gallons per minute must the chemical feed pump be set to deliver ?

Chemical Handling Calculations Example Problem #1 Jar Test Results 23 mg/L FeCl3 Dosage Needed Wastewater Flow 300,000 gallons per day Ferric Chloride Solution Specific Gravity 1.500 Concentration 45 % 1. Calculate the pounds per day of FeCl3 that must be added to the wastewater flow. lbs/d = 23 mg/L X 8.34 lbs/gal X 0.30 MGD = 57.55 lbs/d

2. Calculate the weight in pounds of a gallon of the FeCl3 solution. 8.34 lbs/gal X 1.500 = 12.51 lbs/gal 3. Calculate the pounds of dry FeCl3 per gallon of the solution. 12.51 lbs/gal X 0.45 = 5.63 lbs dry/gallon

4. Calculate the number of gallons of the FeCl3 solution that must be fed per day. 57.55 lbs/day needed 5.63 lbs dry/gallon = 10.2 gallons/day 5. How many gallons per minute must the chemical feed pump be set to deliver ? 10.2 gal Day X 1 Day 24 Hrs 1 Hr 60 Min = 0.0071 Gal Min 0.0071 gal min X 3785 mls gal 26.12 ml/min =

Chemical Handling Calculations Example Problem #2 Calculate the number of milliliters per minute that must be fed of a 49 % Aluminum Sulfate solution with a specific gravity of 1.33 to dose a flow of 150,000 gallons per day at 25 mg/L. Work Calculations on Separate Paper Answers Given on Next Slide

Chemical Handling Calculations Example Problem #2 Calculate the number of milliliters per minute that must be fed of a 49 % Aluminum Sulfate solution with a specific gravity of 1.33 to dose a flow of 150,000 gallons per day at 25 mg/L. 25 mg/L X 0.15 MGD X 8.34 lbs/gal = 31.28 lbs/d 8.34 lbs/gal X 1.33 X 0.49 = 5.44 lbs dry/gal 31.28 lbs dry needed/day 5.44 lbs dry/gallon = 5.75 gal/day 5.75 gal day X 3785 mls gal 1 day 1440 min = 15.11 ml/min

Chemical Handling Calculations Example Problem #3 120 gallons/day of a ferric chloride solution was fed into a flow of 2.5 MGD. The ferric chloride solution had a concentration of 40 % and a specific gravity of 1.430. Calculate the chemical dosage in mg/L. Work Calculations on Separate Paper Answers Given on Next Slide

Chemical Handling Calculations Example Problem #3 120 gallons/day of a ferric chloride solution was fed into a flow of 2.5 MGD. The ferric chloride solution had a concentration of 40 % and a specific gravity of 1.430. Calculate the chemical dosage in mg/L. 8.34 lbs/gal X 1.430 X 0.40 = 4.77 lbs dry/gal 120 gal X 4.77 lbs dry/gal = 572.5 lbs dry/day 572 lbs/day = 2.5 MGD X 8.34 lbs/gal X mg/L 572 lbs/day 2.5 MGD X 8.34 lbs/gal = 27.5 mg/L

Jar Testing of Chemical Dosages Prepared By Michigan Department of Environmental Quality Operator Training and Certification Unit