Review of Unit Root Testing D. A. Dickey North Carolina State University.

Slides:



Advertisements
Similar presentations
1 Radio Maria World. 2 Postazioni Transmitter locations.
Advertisements

EcoTherm Plus WGB-K 20 E 4,5 – 20 kW.
Números.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Fill in missing numbers or operations
/ /17 32/ / /
Reflection nurulquran.com.
EuroCondens SGB E.
Worksheets.
Slide 1Fig 25-CO, p.762. Slide 2Fig 25-1, p.765 Slide 3Fig 25-2, p.765.
STATISTICS Linear Statistical Models
STATISTICS INTERVAL ESTIMATION Professor Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering National Taiwan University.
Addition and Subtraction Equations
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
Disability status in Ethiopia in 1984, 1994 & 2007 population and housing sensus Ehete Bekele Seyoum ESA/STAT/AC.219/25.
1 When you see… Find the zeros You think…. 2 To find the zeros...
SMA 6304 / MIT / MIT Manufacturing Systems Lecture 11: Forecasting Lecturer: Prof. Duane S. Boning Copyright 2003 © Duane S. Boning. 1.
CALENDAR.
Summative Math Test Algebra (28%) Geometry (29%)
2.11.
1 MUKHRIZ IZRAF AZMAN AZIZ Lancaster University ESDS International Annual Conference th November 2009 Institute of Materials, London.
Adding Adding by Partitioning Vertically.
Regression with Time Series Data
Year 10 Exam Revision Groups of 4 Pupil A,B,C,D 1 point for each pupil.
Agents & Intelligent Systems Dr Liz Black
突破信息检索壁垒 -SciFinder Scholar 介绍
Autoregressive Integrated Moving Average (ARIMA) models
Sampling in Marketing Research
Stationary Time Series
Break Time Remaining 10:00.
The basics for simulations
Factoring Quadratics — ax² + bx + c Topic
The Pecan Market How long will prices stay this high?? Brody Blain Vice – President.
MM4A6c: Apply the law of sines and the law of cosines.
Look at This PowerPoint for help on you times tables
Frequency Tables and Stem-and-Leaf Plots 1-3
Regression with Panel Data
1 Prediction of electrical energy by photovoltaic devices in urban situations By. R.C. Ott July 2011.
Statistics Review – Part I
Progressive Aerobic Cardiovascular Endurance Run
2.5 Using Linear Models   Month Temp º F 70 º F 75 º F 78 º F.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
Sets Sets © 2005 Richard A. Medeiros next Patterns.
When you see… Find the zeros You think….
2011 WINNISQUAM COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=1021.
Before Between After.
Benjamin Banneker Charter Academy of Technology Making AYP Benjamin Banneker Charter Academy of Technology Making AYP.
2011 FRANKLIN COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=332.
Subtraction: Adding UP
: 3 00.
5 minutes.
Numeracy Resources for KS2
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Static Equilibrium; Elasticity and Fracture
ANALYTICAL GEOMETRY ONE MARK QUESTIONS PREPARED BY:
Converting a Fraction to %
Resistência dos Materiais, 5ª ed.
Clock will move after 1 minute
Copyright © 2013 Pearson Education, Inc. All rights reserved Chapter 11 Simple Linear Regression.
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
14. Stochastic Processes Introduction
Select a time to count down from the clock above
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Nonstationary Time Series Data and Cointegration Prepared by Vera Tabakova, East Carolina University.
Review of Unit Root Testing D. A. Dickey North Carolina State University (Previously presented at Purdue Econ Dept.)
Understanding Nonstationarity and Recognizing it When You See it
Presentation transcript:

Review of Unit Root Testing D. A. Dickey North Carolina State University

Nonstationary Forecast Stationary Forecast

Trend Stationary Forecast Nonstationary Forecast

Autoregressive Model AR(1) AR(1) Y t Y t-1 e t where Y t is Y t Y t-1 AR(p) Y t Y t-1 Y t-2 p Y t-1 e t

AR(1) Stationary | –OLS Regression Estimators – Stationary case –Mann and Wald (1940s) : For | More exciting algebra coming up ……

AR(1) Stationary | –OLS Regression Estimators – Stationary case (1)Same limit if sample mean replaced by AR(p) Multivariate Normal Limits

| | Y t Y t-1 e t Y t-2 e t-1 e t e t e t-1 e t-2 … k-1 e t-k+1 k Y t-k Y t converges for Var{Y t } Var{Y t } But if, then Y t Y t-1 e t, a random walk. Y t Y 0 e t e t-1 e t-2 … e 1 Var Y t Y 0 t Var Y t Y 0 t Y t Y 0 Y t Y 0

AR(1) | E{Y t } E{Y t } Var{Y t } is constant Var{Y t } is constant Forecast of Y t+L converges to (exponentially fast) Forecast error variance is bounded Y t Y t-1 e t Y t Y 0 Y t Y 0 Var Y t grows without bound Forecast not mean reverting

E = MC 2

Nonstationary cases: Case 1: known (=0) Regression Estimators (Y t on Y t-1 noint ) n /n /n 2

Nonstationary Recall stationary results: Note: all results independent of

Where are my clothes? H 0 : H 1 : ?

DF Distribution ?? Numerator: e 1 e 2 e 3 … e n e 1 e 1 2 e 1 e 2 e 1 e 3 … e 1 e n e 2 e 2 2 e 2 e 3 … e 2 e n e 3 e 3 2 … e 3 e n : : e n e n 2 Y2e3Y2e3 Y1e2Y1e2 Y n-1 e n … :

Denominator For n Observations: (eigenvalues are reciprocals of each other)

Results: Graph of and limit : e T A n e = n -2 e T A n e =

Histograms for n=50:

Theory 1: Donskers Theorem (pg. 68, 137 Billingsley) {e t } an iid(0, ) sequence S n = e 1 +e 2 + …+e n X(t,n) = S [nt] /(n 1/2 )=S n normalized (n=100)

Theory 1: Donskers Theorem (pg. 137 Billingsley) Donsker: X(t,n) converges in law to W(z), a Wiener Process plots of X(t,n) versus z= t/n for n=20, 100, realizations of X(t,100) vs. z=t/n

Theory 2: Continuous mapping theorem (Billingsley pg. 72) h( ) a continuous functional => h( X(t,n) ) h(W(t)) For our estimators, and so…… Distribution is …. ???????

Extension 1: Add a mean (intercept) New quadratic forms. New distributions Estimator independent of Y 0

Extension 2: Add linear trend New quadratic forms. New distributions Regress Y t on 1, t, Y t-1 annihilates Y 0, t

The 6 Distributions coefficient n( j -1) t test f(t) = 0 mean trend

pr< f(t) (1,t) percentiles, n=50 pr< f(t) (1,t) percentiles, limit

Higher Order Models characteristic eqn. roots 0.5, 0.8 ( < 1) note: (1-.5)(1-.8) = -0.1 stationary: nonstationary

Higher Order Models- General AR(2) roots: (m )( m ) = m 2 m AR(2): ( Y t ) = ( Y t-1 ) ( Y t-2 ) + e t nonstationary (0 if unit root) t test same as AR(1). Coefficient requires modification t test N(0,1) !!

Tests Regress: on (1, t)Y t-1 ( ADF test ) ( ) augmenting affects limit distn. does not affect These coefficients normal! |

Nonstationary Forecast Stationary Forecast Silver example:

Is AR(2) sufficient ? test vs. AR(5). proc reg; model D = Y1 D1-D4; test D2=0, D3=0, D4=0; Source df Coeff. t Pr>|t| Intercept Y t Y t-1 -Y t Y t-2 -Y t Y t-3 -Y t Y t-4 -Y t F 41 3 = 1152 / 871 = 1.32 Pr>F = F 41 3 = 1152 / 871 = 1.32 Pr>F = X

Fit AR(2) and do unit root test Method 1: OLS output and tabled critical value (-2.86) proc reg; model D = Y1 D1; Source df Coeff. t Pr>|t| Intercept X Y t X Y t-1 -Y t Y t-1 -Y t Method 2: OLS output and tabled critical values proc arima; identify var=silver stationarity = (dickey=(1)); Augmented Dickey-Fuller Unit Root Tests Type Lags t Prob<t Zero Mean Single Mean Trend

? First part ACF IACF PACF

Full data ACF IACF PACF

Amazon.com Stock ln(Closing Price) Levels Differences

Augmented Dickey-Fuller Unit Root Tests Type Lags Tau Pr < Tau Zero Mean Single Mean Trend Levels Differences Augmented Dickey-Fuller Unit Root Tests Type Lags Tau Pr<Tau Zero Mean <.0001 Single Mean <.0001 Trend <.0001

Autocorrelation Check for White Noise To Chi- Pr > Lag Square DF ChiSq Autocorrelations Are differences white noise (p=q=0) ?

Amazon.com Stock Volume Levels Differences

Augmented Dickey-Fuller Unit Root Tests Type Lags Tau Pr < Tau Zero Mean Single Mean Trend <.0001 Maximum Likelihood Estimation Approx Parameter Estimate t Value Pr > |t| Lag Variable MU < volume MA1, < volume AR1, < volume AR1, < volume NUM < date To Chi- Pr > Lag Square DF ChiSq Autocorrelations

Amazon.com Spread = ln(High/Low) Levels Differences

Augmented Dickey-Fuller Unit Root Tests Type Lags Tau Pr<Tau Zero Mean Single Mean <.0001 Trend <.0001 Maximum Likelihood Estimation Approx Parm Estimate t Value Pr>|t| Lag Variable MU spread MA1, < spread AR1, < spread AR1, < spread NUM date To Chi- Pr > Lag Square DF ChiSq Autocorrelations

S.E. Said: Use AR(k) model even if MA terms in true model. N. Fountis: Vector Process with One Unit Root D. Lee: Double Unit Root Effect M. Chang: Overdifference Checks G. Gonzalez-Farias: Exact MLE K. Shin: Multivariate Exact MLE T. Lee: Seasonal Exact MLE Y. Akdi, B. Evans – Periodograms of Unit Root Processes

H. Kim: Panel Data tests S. Huang: Nonlinear AR processes S. Huh: Intervals: Order Statistics S. Kim: Intervals: Level Adjustment & Robustness J. Zhang: Long Period Seasonal. Q. Zhang: Comparing Seasonal Cointegration Methods.