The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted.

Slides:



Advertisements
Similar presentations
Why do non-Mendelian patterns occur? (When to decide whether it is “Mendelian” or “non- Mendelian”)
Advertisements

General Genetic Bio 221 Lab 6. Law of Independent Assortment (The "Second Law") The Law of Independent Assortment, also known as "Inheritance Law", states.
AP Biology.  Segregation of the alleles into gametes is like a coin toss (heads or tails = equal probability)  Rule of Multiplication  Probability.
Chi-Square Test Chi-square is a statistical test commonly used to compare observed data with data we would expect to obtain according to a specific hypothesis.
Mendelian Genetics. Genes- genetic material on a chromosome that codes for a specific trait Genotype- the genetic makeup of the organism Phenotype- the.
UNDERSTANDING LINKAGE, AND GENETIC MAPPING. INTRODUCTION Each species of organism must contain hundreds to thousands of genes Yet most species have at.
UNDERSTANDING LINKAGE, AND GENETIC MAPPING. INTRODUCTION Each species of organism must contain hundreds to thousands of genes –Yet most species have at.
Chi Square (X 2 ) Analysis Calculating the significance of deviation in experimental results.
The Chi-square goodness of fit test
Chi-Squared Test.
Announcements 1. Answers to Ch. 3 problems 6, 7, 8, 12, 17, 22, 32, 35 posted - 230A. 2. Problem set 1 answers due in lab this week at the beginning of.
Chi Square.
Chi-Square as a Statistical Test Chi-square test: an inferential statistics technique designed to test for significant relationships between two variables.
Inquiry 1 written AND oral reports due Th 9/24 or M 9/28.
Today: Chi 2, Inquiry 2 and Lab Safety...
PowerPoint Presentation Materials to accompany Genetics: Analysis and Principles Robert J. Brooker Copyright ©The McGraw-Hill Companies, Inc. Permission.
Chapter 3 – Basic Principles of Heredity. Johann Gregor Mendel (1822 – 1884) Pisum sativum Rapid growth; lots of offspring Self fertilize with a single.
Chi square analysis Just when you thought statistics was over!!
Today: Chi squared and non- nuclear inheritance. Homologous pair of chromosomes Linkage can be used to determine distance.
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data “good” or not. In our fruit fly labs we are using laws.
Fruit Fly Basics Drosophila melanogaster. Wild Type Phenotype Red eyes Tan Body Black Rings on abdomen Normal Wings.
Mendelian Genetics Genetics.
Statistical Analysis: Chi Square AP Biology Ms. Haut.
Chi-Square Analysis AP Biology.
CHI-SQUARE ANALYSIS. In genetic studies the chi-square test is used to evaluate a genetic theory or hypothesis by comparing actual breeding results to.
Analyzing Data  2 Test….”Chi” Square. Forked-Line Method, F2 UuDd x UuDd 1/4 UU 1/2 Uu 1/4 uu 1/4 DD 1/2 Dd 1/4 dd 1/4 DD 1/2 Dd 1/4 dd 1/4 DD 1/2 Dd.
Did Mendel fake is data? Do a quick internet search and can you find opinions that support or reject this point of view. Does it matter? Should it matter?
III. Statistics and chi-square How do you know if your data fits your hypothesis? (3:1, 9:3:3:1, etc.) For example, suppose you get the following data.
PROBABILITY AND STATISTICS The laws of inheritance can be used to predict the outcomes of genetic crosses For example –Animal and plant breeders are concerned.
Recombination and Linked Genes
Hypothesis Testing Hypothesis vs Theory  Hypothesis  An educated guess about outcome of an experiment  Theory  An explanation of observed facts that.
Chi-Square Analysis AP Biology.
The Chi Square Test A statistical method used to determine goodness of fit Chi-square requires no assumptions about the shape of the population distribution.
Statistical Analysis: Chi Square
I. CHI SQUARE ANALYSIS Statistical tool used to evaluate variation in categorical data Used to determine if variation is significant or instead, due to.
Virtual Fly Lab AP Biology
Genetics and Probability
Cell Cycle and Chi Square
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data “good” or not. In our fruit fly labs we are using laws.
Fruit Fly Genetics Drosophila melanogaster
Recombination and Linked Genes
Analyzing Data c2 Test….”Chi” Square.
Virtual Fly Lab AP Biology
Chi-Square Analysis AP Biology.
Chi-Square Test.
The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted.
MENDELIAN GENETICS CHI SQUARE ANALYSIS
Analyzing Data c2 Test….”Chi” Square.
UNIT 6: MENDELIAN GENETICS CHI SQUARE ANALYSIS
The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted.
Analyzing Data c2 Test….”Chi” Square.
Chi-Square Analysis.
Chi-Square Test.
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data is “good” or not. In our fruit fly labs we are using.
Chi-Square Analysis AP Biology.
The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted.
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data is “good”. In our fruit fly labs we are using laws of.
Statistical Analysis: Chi Square
Chi-Square Test.
Chi-Square Analysis AP Biology.
Chi-Square Analysis AP Biology.
How do you know if the variation in data is the result of random chance or environmental factors? O is the observed value E is the expected value.
UNIT V CHISQUARE DISTRIBUTION
S.M.JOSHI COLLEGE, HADAPSAR
20 May 2019 Chi2 Test For Genetics Help sheet.
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data “good” or not. In our fruit fly labs we are using laws.
Chi-Square Analysis AP Biology.
Will use Fruit Flies for our example
Presentation transcript:

The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted from a hypothesis Note: The chi square test does not prove that a hypothesis is correct It evaluates to what extent the data and the hypothesis have a good fit

The Chi Square Test (we will cover this in lab; the following slides will be useful to review after that lab) The general formula is (O – E)2 c2 = S E where O = observed data in each category E = observed data in each category based on the experimenter’s hypothesis S = Sum of the calculations for each category

Consider the following example in Drosophila melanogaster Gene affecting wing shape c+ = Normal wing c = Curved wing Gene affecting body color e+ = Normal (gray) e = ebony Note: The wild-type allele is designated with a + sign Recessive mutant alleles are designated with lowercase letters The Cross: A cross is made between two true-breeding flies (c+c+e+e+ and ccee). The flies of the F1 generation are then allowed to mate with each other to produce an F2 generation.

Applying the chi square test The outcome F1 generation All offspring have straight wings and gray bodies F2 generation 193 straight wings, gray bodies 69 straight wings, ebony bodies 64 curved wings, gray bodies 26 curved wings, ebony bodies 352 total flies Applying the chi square test Step 1: Propose a null hypothesis (Ho) that allows us to calculate the expected values based on Mendel’s laws The two traits are independently assorting

Step 2: Calculate the expected values of the four phenotypes, based on the hypothesis According to our hypothesis, there should be a 9:3:3:1 ratio on the F2 generation Phenotype Expected probability Expected number Observed number straight wings, gray bodies 9/16 9/16 X 352 = 198 193 straight wings, ebony bodies 3/16 3/16 X 352 = 66 64 curved wings, gray bodies 62 curved wings, ebony bodies 1/16 1/16 X 352 = 22 24

Step 3: Apply the chi square formula (O1 – E1)2 E1 (O2 – E2)2 E2 (O3 – E3)2 E3 (O4 – E4)2 E4 c2 = + + + (193 – 198)2 198 (69 – 66)2 66 (64 – 66)2 66 (26 – 22)2 22 c2 = + + + c2 = 0.13 + 0.14 + 0.06 + 0.73 Expected number Observed number 198 193 66 64 62 22 24 c2 = 1.06

Step 4: Interpret the chi square value The calculated chi square value can be used to obtain probabilities, or P values, from a chi square table These probabilities allow us to determine the likelihood that the observed deviations are due to random chance alone Low chi square values indicate a high probability that the observed deviations could be due to random chance alone High chi square values indicate a low probability that the observed deviations are due to random chance alone If the chi square value results in a probability that is less than 0.05 (ie: less than 5%) it is considered statistically significant The hypothesis is rejected

Step 4: Interpret the chi square value Before we can use the chi square table, we have to determine the degrees of freedom (df) The df is a measure of the number of categories that are independent of each other If you know the 3 of the 4 categories you can deduce the 4th (total number of progeny – categories 1-3) df = n – 1 where n = total number of categories In our experiment, there are four phenotypes/categories Therefore, df = 4 – 1 = 3 Refer to Table 2.1

1.06

Step 4: Interpret the chi square value With df = 3, the chi square value of 1.06 is slightly greater than 1.005 (which corresponds to P-value = 0.80) P-value = 0.80 means that Chi-square values equal to or greater than 1.005 are expected to occur 80% of the time due to random chance alone; that is, when the null hypothesis is true. Therefore, it is quite probable that the deviations between the observed and expected values in this experiment can be explained by random sampling error and the null hypothesis is not rejected. What was the null hypothesis?