Christa Trandum, Peter Westh, Kent Jørgensen, Ole G. Mouritsen 

Slides:



Advertisements
Similar presentations
Liposomes, Disks, and Spherical Micelles: Aggregate Structure in Mixtures of Gel Phase Phosphatidylcholines and Poly(Ethylene Glycol)-Phospholipids Markus.
Advertisements

Agarose-Dextran Gels as Synthetic Analogs of Glomerular Basement Membrane: Water Permeability Jeffrey A. White, William M. Deen Biophysical Journal Volume.
Willem K. Kegel, Paul van der Schoot  Biophysical Journal 
Line Active Hybrid Lipids Determine Domain Size in Phase Separation of Saturated and Unsaturated Lipids  Robert Brewster, Samuel A. Safran  Biophysical.
Liquid-Liquid Phase Equilibrium
Temperature Dependency of Molecular Mobility in Preserved Seeds
Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix  E. Sevcsik, G. Pabst, W. Richter, S. Danner,
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Geometrical Properties of Gel and Fluid Clusters in DMPC/DSPC Bilayers: Monte Carlo Simulation Approach Using a Two-State Model  István P. Sugár, Ekaterina.
Investigation of Domain Formation in Sphingomyelin/Cholesterol/POPC Mixtures by Fluorescence Resonance Energy Transfer and Monte Carlo Simulations  Monica.
Role of Hydration Water in Protein Unfolding
Volume 84, Issue 5, Pages (May 2003)
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Volume 97, Issue 5, Pages (September 2009)
Volume 107, Issue 10, Pages (November 2014)
Volume 100, Issue 6, Pages (March 2011)
Volume 93, Issue 10, Pages (November 2007)
Volume 83, Issue 2, Pages (August 2002)
Volume 112, Issue 7, Pages (April 2017)
Composition Fluctuations in Lipid Bilayers
Determination of the Hydrocarbon Core Structure of Fluid Dioleoylphosphocholine (DOPC) Bilayers by X-Ray Diffraction Using Specific Bromination of the.
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
David W. Allender, M. Schick  Biophysical Journal 
Terhi Maula, Md. Abdullah Al Sazzad, J. Peter Slotte 
Volume 107, Issue 12, Pages (December 2014)
Volume 99, Issue 8, Pages (October 2010)
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Simulation Studies of Protein-Induced Bilayer Deformations, and Lipid-Induced Protein Tilting, on a Mesoscopic Model for Lipid Bilayers with Embedded.
Volume 103, Issue 4, Pages (August 2012)
Benjamin L. Stottrup, Sarah L. Keller  Biophysical Journal 
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Volume 83, Issue 6, Pages (December 2002)
Michael Katzer, William Stillwell  Biophysical Journal 
Volume 93, Issue 2, Pages (July 2007)
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
Volume 74, Issue 5, Pages (May 1998)
T.M. Okonogi, H.M. McConnell  Biophysical Journal 
Volume 110, Issue 3, Pages (February 2016)
Heiko Heerklotz, Joachim Seelig  Biophysical Journal 
Volume 85, Issue 6, Pages (December 2003)
Probing Red Cell Membrane Cholesterol Movement with Cyclodextrin
Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations  Liana C. Silva, Anthony H. Futerman, Manuel.
Jason K. Cheung, Thomas M. Truskett  Biophysical Journal 
Domain Formation in Model Membranes Studied by Pulsed-Field Gradient-NMR: The Role of Lipid Polyunsaturation  Andrey Filippov, Greger Orädd, Göran Lindblom 
Translational Entropy and DNA Duplex Stability
Alessandro Paciaroni, Stefania Cinelli, Giuseppe Onori 
Quantitative Membrane Electrostatics with the Atomic Force Microscope
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Effects of Monovalent Anions of the Hofmeister Series on DPPC Lipid Bilayers Part II: Modeling the Perpendicular and Lateral Equation-of-State  E. Leontidis,
Volume 94, Issue 11, Pages (June 2008)
Miscibility Critical Pressures in Monolayers of Ternary Lipid Mixtures
Volume 80, Issue 5, Pages (May 2001)
Cyclic AMP Diffusion Coefficient in Frog Olfactory Cilia
Jess V. Nauman, Phil G. Campbell, Frederick Lanni, John L. Anderson 
Volume 99, Issue 11, Pages (December 2010)
Volume 103, Issue 11, Pages (December 2012)
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
Main Phase Transitions in Supported Lipid Single-Bilayer
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Kiyoshi Kawai, Toru Suzuki, Masaharu Oguni  Biophysical Journal 
Phase-Separation and Domain-Formation in Cholesterol-Sphingomyelin Mixture: Pulse- EPR Oxygen Probing  Laxman Mainali, Marija Raguz, Witold K. Subczynski 
Volume 99, Issue 11, Pages (December 2010)
Montse Rovira-Bru, David H. Thompson, Igal Szleifer 
Volume 83, Issue 6, Pages (December 2002)
Volume 112, Issue 7, Pages (April 2017)
Volume 94, Issue 11, Pages (June 2008)
Deuterium NMR Study of the Effect of Ergosterol on POPE Membranes
Ana Coutinho, Liana Silva, Alexander Fedorov, Manuel Prieto 
Partition and Permeation of Dextran in Polyacrylamide Gel
Presentation transcript:

A Thermodynamic Study of the Effects of Cholesterol on the Interaction between Liposomes and Ethanol  Christa Trandum, Peter Westh, Kent Jørgensen, Ole G. Mouritsen  Biophysical Journal  Volume 78, Issue 5, Pages 2486-2492 (May 2000) DOI: 10.1016/S0006-3495(00)76793-2 Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 1 Schematic phase diagram for mixtures of DMPC and cholesterol (From Ipsen et al. 1987). Tm is the main transition temperature of pure DMPC. The different phases are labeled: so, solid-ordered, the gel phase; ld, liquid-disordered, the fluid phase; and lo, liquid-ordered. Biophysical Journal 2000 78, 2486-2492DOI: (10.1016/S0006-3495(00)76793-2) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 2 Measured values of the partial enthalpy, HlipidE, of DMPC liposomes of different cholesterol content in ethanol solutions calculated according to Eq. 1 and plotted as a function of the ethanol molality, methanol at 28°C. ○, 0mol%; ●, 0.5%; □, 1%; ■, 5%; △, 10%; ▴, 15%; ▿, 20%; ▾, 25%; ♢, 30%; and ♦, 40% mol% cholesterol. Biophysical Journal 2000 78, 2486-2492DOI: (10.1016/S0006-3495(00)76793-2) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 3 The interaction parameter, Hlipid–alcohol, as a function of cholesterol concentration at 28°C. The interaction parameter is taken directly as the slope of the curves in Fig. 2. The partitioning coefficient of ethanol (mole fraction scale) is plotted as a function of the cholesterol concentration in the inset. Biophysical Journal 2000 78, 2486-2492DOI: (10.1016/S0006-3495(00)76793-2) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 4 (A) The temperature dependence of the interaction parameter, Hlipid–alcohol. (B) The temperature dependence of (○) partitioning coefficients of ethanol into pure DMPC bilayers and (□) partitioning coefficients determined from the interaction parameter, Hlipid–alcohol. Applying a standard partitioning model, where ethanol is considered distributed between the membrane and the aqueous phase, partitioning coefficients (in molal units) can be estimated from the interaction parameters using the equation Km=Hlipid–ethanolE/ΔH°Mlipid (Trandum et al., 1999b). Biophysical Journal 2000 78, 2486-2492DOI: (10.1016/S0006-3495(00)76793-2) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 5 The temperature dependence of the interaction parameter, Hlipid–alcohol, at various cholesterol concentrations. ○, Pure DMPC; □, 4; △, 15; ▿, 25; and ♢, 35mol%. Biophysical Journal 2000 78, 2486-2492DOI: (10.1016/S0006-3495(00)76793-2) Copyright © 2000 The Biophysical Society Terms and Conditions