Jamie M. Dettler, Robert Buscaglia, Vu H. Le, Edwin A. Lewis 

Slides:



Advertisements
Similar presentations
Cell Traction Forces Direct Fibronectin Matrix Assembly Christopher A. Lemmon, Christopher S. Chen, Lewis H. Romer Biophysical Journal Volume 96, Issue.
Advertisements

Nonlinear Poisson Equation for Heterogeneous Media Langhua Hu, Guo-Wei Wei Biophysical Journal Volume 103, Issue 4, Pages (August 2012) DOI: /j.bpj
Binding Thermodynamics of Ferredoxin:NADP+ Reductase: Two Different Protein Substrates and One Energetics  Marta Martínez-Júlvez, Milagros Medina, Adrián.
Molecular Determinants of U-Type Inactivation in Kv2.1 Channels
Kinetic Hysteresis in Collagen Folding
Lars Kjaer, Lise Giehm, Thomas Heimburg, Daniel Otzen 
Volume 97, Issue 5, Pages (September 2009)
Thermodynamics of Forming a Parallel DNA Crossover
Zhanghan Wu, Jianhua Xing  Biophysical Journal 
Volume 23, Issue 4, Pages (April 2015)
Volume 110, Issue 10, Pages (May 2016)
Volume 103, Issue 5, Pages (September 2012)
Volume 99, Issue 4, Pages (August 2010)
Volume 103, Issue 9, Pages (November 2012)
Volume 87, Issue 4, Pages (October 2004)
Santosh K. Dasika, Kalyan C. Vinnakota, Daniel A. Beard 
The Binding Affinity of Ff Gene 5 Protein Depends on the Nearest-Neighbor Composition of the ssDNA Substrate  Tung-Chung Mou, Carla W. Gray, Donald M.
Volume 108, Issue 3, Pages (February 2015)
Volume 113, Issue 12, Pages (December 2017)
The N-Terminal Actin-Binding Tandem Calponin-Homology (CH) Domain of Dystrophin Is in a Closed Conformation in Solution and When Bound to F-actin  Surinder M.
Volume 96, Issue 5, Pages (March 2009)
Binding the Mammalian High Mobility Group Protein AT-hook 2 to AT-Rich Deoxyoligonucleotides: Enthalpy-Entropy Compensation  Suzanne Joynt, Victor Morillo,
Volume 96, Issue 6, Pages (March 2009)
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Terhi Maula, Md. Abdullah Al Sazzad, J. Peter Slotte 
Volume 112, Issue 10, Pages (May 2017)
Folding of the Protein Domain hbSBD
Volume 86, Issue 4, Pages (April 2004)
Volume 102, Issue 3, Pages (February 2012)
Volume 86, Issue 4, Pages (April 2004)
Volume 109, Issue 5, Pages (September 2015)
EPR Spectroscopy Targets Structural Changes in the E
Heleen Meuzelaar, Jocelyne Vreede, Sander Woutersen 
A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations  Jianwen A. Feng,
Volume 97, Issue 1, Pages (July 2009)
Michael Katzer, William Stillwell  Biophysical Journal 
Thermodynamic Profiling of Peptide Membrane Interactions by Isothermal Titration Calorimetry: A Search for Pores and Micelles  J.R. Henriksen, T.L. Andresen 
Volume 84, Issue 6, Pages (June 2003)
Volume 92, Issue 6, Pages (March 2007)
Volume 99, Issue 9, Pages (November 2010)
Yusuke Nakasone, Kazunori Zikihara, Satoru Tokutomi, Masahide Terazima 
Refolding of SDS-Unfolded Proteins by Nonionic Surfactants
Volume 103, Issue 2, Pages (July 2012)
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Structural Basis of Homology-Directed DNA Repair Mediated by RAD52
Kinetic Hysteresis in Collagen Folding
Volume 105, Issue 1, Pages (July 2013)
Volume 101, Issue 4, Pages (August 2011)
Volume 99, Issue 2, Pages (July 2010)
RNA Quadruplex-Based Modulation of Gene Expression
Volume 96, Issue 2, Pages (January 2009)
Volume 98, Issue 4, Pages (February 2010)
Volume 89, Issue 1, Pages (July 2005)
Thermodynamic Characterization of the Unfolding of the Prion Protein
Translational Entropy and DNA Duplex Stability
A Mesoscale Model of DNA and Its Renaturation
Volume 85, Issue 5, Pages (November 2003)
Allosteric Control of Syntaxin 1a by Munc18-1: Characterization of the Open and Closed Conformations of Syntaxin  Damian Dawidowski, David S. Cafiso 
Two Latent and Two Hyperstable Polymeric Forms of Human Neuroserpin
Binding-Linked Protonation of a DNA Minor-Groove Agent
Arnoldus W.P. Vermeer, Willem Norde  Biophysical Journal 
Volume 93, Issue 10, Pages (November 2007)
Shobini Jayaraman, Donald L. Gantz, Olga Gursky  Biophysical Journal 
Volume 102, Issue 1, Pages (January 2012)
Volume 102, Issue 5, Pages (March 2012)
The N-Terminal Actin-Binding Tandem Calponin-Homology (CH) Domain of Dystrophin Is in a Closed Conformation in Solution and When Bound to F-actin  Surinder M.
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Volume 106, Issue 9, Pages (May 2014)
Rumiana Koynova, Robert C. MacDonald  Biophysical Journal 
Conformational Homogeneity and Excited-State Isomerization Dynamics of the Bilin Chromophore in Phytochrome Cph1 from Resonance Raman Intensities  Katelyn M.
Presentation transcript:

DSC Deconvolution of the Structural Complexity of c-MYC P1 Promoter G- Quadruplexes  Jamie M. Dettler, Robert Buscaglia, Vu H. Le, Edwin A. Lewis  Biophysical Journal  Volume 100, Issue 6, Pages 1517-1525 (March 2011) DOI: 10.1016/j.bpj.2011.01.068 Copyright © 2011 Biophysical Society Terms and Conditions

Figure 1 Raw excess heat capacity of the c-MYC WT P1 promoter 24-mer G-quadruplex at two different ionic strengths. The solid curve is the thermal denaturation of the WT 24-mer construct in 30 mM [K+] BPES buffer, whereas the dashed line is the thermal denaturation of the WT 24-mer construct in 130 mM [K+] BPES buffer at pH 7.0. Biophysical Journal 2011 100, 1517-1525DOI: (10.1016/j.bpj.2011.01.068) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 2 DSC thermograms for the thermal denaturation of the c-MYC WT P1 promoter 24-mer G-quadruplex in (a) 30 mM [K+] and (b) 130 mM [K+] BPES. In the lower ionic strength solution, the raw excess heat capacity has been deconvoluted into two “two-state processes.” The lower melting transition is attributed to the 1-6-1 isomer with a Tm of 72.4°C, and the higher melting conformer is attributed to the 1-2-1 isomer (Tm of 80.6°C). The raw excess heat capacity has been deconvoluted into two “two-state processes.” The lower melting conformer is attributed to the 1-6-1 isomer (Tm of 78.8°C), and the higher melting conformer is attributed to the 1-2-1 isomer (Tm of 93.1°C). Biophysical Journal 2011 100, 1517-1525DOI: (10.1016/j.bpj.2011.01.068) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 3 DSC thermograms for the thermal denaturation of the c-MYC mutant 24-mer G-quadruplex constructs in 130 mM [K+]. (a) Thermal denaturation of the 1-6-1 mutant 24-mer quadruplex. The raw excess heat capacity (dashed line) has been fit for a single “two-state process”(solid line). (b) Thermal denaturation of the 1-2-1 mutant 24-mer quadruplex. The raw excess heat capacity (dashed line) has been fit for a single two-state process (solid line). Biophysical Journal 2011 100, 1517-1525DOI: (10.1016/j.bpj.2011.01.068) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 4 DSC thermogram for the thermal denaturation of the c-MYC WT 24-mer G-quadruplex with 1:10 mols of TMPyP4/WT DNA in 30 mM [K+]. The raw excess heat capacity has been deconvoluted into three independent two-state processes. The lower melting conformer is attributed to the 1-6-1 isomer, and the higher melting conformer is attributed to the 1-2-1 isomer. The highest melting transition, which appears with the addition of TMPyP4, is for the melting of the TMPyP4 stabilized G-quadruplex complex. Biophysical Journal 2011 100, 1517-1525DOI: (10.1016/j.bpj.2011.01.068) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 5 ITC data for the addition of TMPyP4 to the 1:6:1 c-MYC mutant construct at pH 7.0 in 130 mM [K+]. The upper panel shows the raw ITC power signal, and the lower panel shows the integrated heat data (○). The best-fit nonlinear regression line (—) is for the thermodynamic parameters obtained using a three-independent-sites model with three values for Ki, three values for ΔHi, and three values for ni. Biophysical Journal 2011 100, 1517-1525DOI: (10.1016/j.bpj.2011.01.068) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 6 CD spectra of the c-MYC P1 1-6-1 24-mer G-quadruplex construct in 130 mM [K+] BPES titrated with TMPyP4. Typical CD spectra are shown for the 1-6-1 mutant alone (light gray), and the consecutive spectra from top to bottom are for the complex of DNA/TMPyP4 with mole ratios of 1:0, 1:.5, 1:1, 1:2, 1:3, 1:4 1:5, and 1:6. The CD spectrum for the G-quadruplex sequence at pH 7.0 shows the classical intramolecular parallel-stranded quadruplex with a characteristic maximum in molar ellipticity at ∼264 nm and a characteristic minimum in molar ellipticity at ∼242 nm. Biophysical Journal 2011 100, 1517-1525DOI: (10.1016/j.bpj.2011.01.068) Copyright © 2011 Biophysical Society Terms and Conditions