Transmission Line Theory

Slides:



Advertisements
Similar presentations
Waves and Transmission Lines Wang C. Ng. Traveling Waves.
Advertisements

Lecture 12 Last lecture: impedance matching Vg(t) A’ A Tarnsmission line ZLZL Z0Z0 Z in Zg IiIi Matching network Z in = Z 0.
Lecture 4 Last lecture: 1.Phasor 2.Electromagnetic spectrum 3.Transmission parameters equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L V BB’ (t)
Lecture 6 Last lecture: Wave propagation on a Transmission line Characteristic impedance Standing wave and traveling wave Lossless transmission.
Helix Antenna Helix Antenna Array Design and Measurements By Ivette Betancourt.
Lecture 2 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient.
Lecture 9 Last lecture Parameter equations input impedance.
Lecture 11 Today: impedance matcing Vg(t) A’ A Tarnsmission line ZLZL Z0Z0 Z in Zg IiIi Matching network Z in = Z 0.
Find the period of the function y = 4 sin x
Lecture 9 Last lecture Power flow on transmission line.
Robust Reinforcement Learning Control Chuck Anderson, Matt Kretchmar, Department of Computer Science, Peter Young, Department of Electrical and Computer.
Chapter 2. Transmission Line Theory
Some Connection between Algebraic Structure and Block Codes Some Connection between Algebraic Structure and Block Codes Marjan Kuchaki Rafsanjani Department.
Telegragher’s Equations Group - A. Usman Nofal Kh. Muhammad Mashood Khawaja Muhammad Abdul Rahman Abdullah Amin Yahya Ahmad Syeda Sana Zafar Taimoor Tahir.
Lecture 9 Smith Chart Normalized admittance z and y are directly opposite each other on.
Lecture 12 Smith Chart & VSWR
Prof. David R. Jackson Dept. of ECE Notes 3 ECE Microwave Engineering Fall 2011 Smith Chart Examples 1.
Departments in Business Business Name 1 Business Name 2.
ELECTROMAGNETICS AND APPLICATIONS Lecture 11 RF & Microwave TEM Lines Luca Daniel.
Smith Chart - 1 Transmission Lines and Waveguides 4. The Smith Chart by Nannapaneni Narayana Rao.
Prof. David R. Jackson Dept. of ECE Notes 2 ECE Microwave Engineering Fall 2011 Smith Charts 1.
SENIOR MANAGEMENT (Organizational Chart) Chief Executive Officer & General Manager Ron Harper Executive Assistant to CEO/General Manager Sr. Vice President.
Lale T. Ergene Fields and Waves Lesson 5.5 Wave Reflection and Transmission.
Lecture 4 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
Lossy Lines and Guides - 1 Transmission Lines and Waveguides 6. Lossy Lines and Guides by Nannapaneni Narayana Rao.
Microwave Engineering, 3rd Edition by David M. Pozar Copyright © 2004 John Wiley & Sons Figure 2.1 (p. 50) Voltage and current definitions and equivalent.
Chapter 2. Transmission Line Theory
Chapter 2 Transmission Line Theory (2.1 ~ 2.5) 전자파연구실 1.
Lecture 5 Last lecture: Transmission line parameters Types of transmission lines Lumped-element model Transmission line equations Telegrapher’s.
Chapter9 Theory and Applications of Transmission Lines.
Prof. David R. Jackson Dept. of ECE Notes 2 ECE Microwave Engineering Fall 2015 Smith Charts 1.
ΜΕΤΑΣΥΛΛΕΚΤΙΚΗ ΦΥΣΙΟΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 3. Μετασυλλεκτική Εργ3-Λιοσάτου Γ.2 ΒΙΟΛΟΓΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗ ΦΘΟΡΑ ΤΩΝ ΟΠΩΡΟΚΗΠΕΥΤΙΚΩΝ Αναπνοή Η λειτουργία.
Electrical Engineering
Chapter 11 AC Power Analysis
Lecture 8 Last lecture short circuit line open circuit line
EE 442 POWER ELECTRONICS I Introduction Dr. Said A. Deraz
ELEC 401 MICROWAVE ELECTRONICS Lecture on Transient Analysis of TL
Standing Wave Lecture 7 Voltage maximum
Which of the following statements is true for this triangle?
transmission line models telegraphist's equations
Shahid Bahonar University of Kerman
Design via Frequency Response Techniques
قانون المنافسة ومنع الاحتكار
تهيئة الطالب مهنيا وتعميق معارفه . تنمية مهارات الطالب و قدراته .
The Department of Electrical and Computer Engineering welcomes you to…
Sum and Difference Identities
Sum and Difference Identities for the Sin Function
הוראת מיומנויות של עבודה בקבוצה מחקר פעולה
ELEC 401 MICROWAVE ELECTRONICS Lecture on Transient Analysis of TL
& Microwave Engineering
FLASH! Fredda Wyatt 01/2009.
القدوة.
اثرات گرمايش جهاني تغييرات آب و هوا، تأثيرات عميق و شديدي بر بسياري از عوامل اساسي موثر بر سلامت از جمله : آب، غذا، هوا و محيط زيست دارد كه اين مورد خود.
Rotated Conics WOW!!!.
Half-Angle Identities
Muhamed Vila born 23 September 1993 Sarajevo, Bosnia and Herzegovina
Find the exact values of the trigonometric functions {image} and {image}
Comparison Functions Islamic University of Gaza Faculty of Engineering
Project Title (72 pt, Arial Narrow, Bold)
THREE-PHASE INVERTERS
Microwave Engineering
THE BATTLE OF LONG TAN.
USING ARRAYS IN MATLAB BUILT-IN MATH FUNCTIONS
x x HW 13: Inverse Trig Functions HW 13: Inverse Trig Functions
Sum and Difference Identities
LABORATORY OF PROCESS ENGINEERING
Quick Integral Speed Quiz.
Input-Output Stability
4th Week Seminar Sunryul Kim Antennas & RF Devices Lab.
Presentation transcript:

Transmission Line Theory Shahid Bahonar University of Kerman Faculty of Engineering Electrical Engineering Department Transmission Line Theory By: Kambiz Afrooz

𝑉(𝑧)=𝑎 𝑒 −𝛾𝑧 +𝑏 𝑒 𝛾𝑧 =𝑎 𝑒 −𝛼𝑧 𝑒 −𝑗𝛽𝑧 +𝑏 𝑒 𝛼𝑧 𝑒 𝑗𝛽𝑧 𝜕 𝑉(𝑧 𝜕 𝑧 =−(𝑅+𝑗𝐿𝜔) 𝐼(𝑧)  𝜕 𝐼(𝑧 𝜕 𝑧 =−(𝐺+𝑗𝐶𝜔) 𝑉(𝑧)  𝜕 2  𝑉(𝑧 𝜕  𝑧 2 =−(𝑅+𝑗𝐿𝜔)  𝜕 𝐼(𝑧 𝜕 𝑧 =(𝑅+𝑗𝐿𝜔)(𝐺+𝑗𝐶𝜔)𝑉(𝑧)  𝜕 2  𝑉(𝑧 𝜕  𝑧 2 = 𝛾 2 𝑉(𝑧) 𝛾= 𝑅+𝑗𝐿𝜔)(𝐺+𝑗𝐶𝜔 =𝛼+𝑗𝛽 𝑆 2 = 𝛾 2        ⇒𝑆=±𝛾 𝑉(𝑧)=𝑎  𝑒 −𝛾𝑧 +𝑏  𝑒 𝛾𝑧 =𝑎  𝑒 −𝛼𝑧 𝑒 −𝑗𝛽𝑧 +𝑏  𝑒 𝛼𝑧 𝑒 𝑗𝛽𝑧 𝑣(𝑧,𝑡)=𝑎  𝑒 −𝛼𝑧  cos(𝜔𝑡−𝛽𝑧)+𝑏  𝑒 𝛼𝑧  cos(𝜔𝑡+𝛽𝑧) 

𝑍 𝐿 = 𝑉(0) 𝐼(0) = 𝑍 ∘ 𝑉++𝑉− 𝑉+−𝑉− 𝑉− 𝑉+ = 𝑍 𝐿 − 𝑍 ∘ 𝑍 𝐿 + 𝑍 ∘ In lossless case: 𝑉 𝑧 =𝑉+  𝑒 −𝑗𝛽𝑧 +𝑉− 𝑒 𝑗𝛽𝑧 𝐼(𝑧)= 𝑉 + 𝑍 ∘ 𝑒 −𝑗𝛽𝑧 − 𝑉 − 𝑍 ∘ 𝑒 𝑗𝛽𝑧 𝑉 0 =𝑉++𝑉− 𝑍 𝐿 = 𝑉(0) 𝐼(0) = 𝑍 ∘ 𝑉++𝑉− 𝑉+−𝑉− 𝑉− 𝑉+ = 𝑍 𝐿 − 𝑍 ∘ 𝑍 𝐿 + 𝑍 ∘ 𝐼(0)= 𝑉 + 𝑍 ∘ − 𝑉 − 𝑍 ∘

𝐼(𝑧)= 𝑉 + 𝑍 ∘ 𝑒 −𝑗𝛽𝑧 − 𝑉+ГL 𝑍 ∘ 𝑒 𝑗𝛽𝑧 = 𝑉+(z)−𝑉−(z) 𝑍 ∘ 𝑍 𝐿 − 𝑍 ∘ 𝑍 𝐿 + 𝑍 ∘ =Г𝐿 1+Г𝐿 1−Г𝐿 = 𝑍 𝐿 𝑍 ∘ =𝑧𝐿 𝑉−= 𝑍 𝐿 − 𝑍 ∘ 𝑍 𝐿 + 𝑍 ∘ 𝑉+=Г𝐿𝑉+ 𝑉 𝑧 =𝑉+  𝑒 −𝑗𝛽𝑧 +𝑉+ГL 𝑒 𝑗𝛽𝑧 = 𝑉+(z)+ 𝑉−(z) V(𝑧+λ)=V(z) 𝐼(𝑧)= 𝑉 + 𝑍 ∘ 𝑒 −𝑗𝛽𝑧 − 𝑉+ГL 𝑍 ∘ 𝑒 𝑗𝛽𝑧 = 𝑉+(z)−𝑉−(z) 𝑍 ∘ I(𝑧+λ)=I(z) Г(z) = 𝑉−(z) 𝑉+(z) = 𝑉+ГL 𝑒 𝑗𝛽𝑧 𝑉+  𝑒 −𝑗𝛽𝑧 = ГL 𝑒 𝑗2𝛽𝑧 Z(z)= 𝑉(𝑧) 𝐼(𝑧) = 𝑍 ∘ 𝑍 𝐿 −𝑗 𝑍 ∘ tan⁡(β𝑧) 𝑍 ∘ −𝑗 𝑍 𝐿 tan⁡(β𝑧)

Г(𝑙) = 𝑉−(𝑙) 𝑉+(𝑙) = 𝑉+ГL 𝑒 −𝑗𝛽𝑙 𝑉+ 𝑒 𝑗𝛽𝑙 = ГL 𝑒 −𝑗2𝛽𝑙 𝛤(𝑙)=| 𝛤 𝐿 |  𝑒 𝑗 ∠  𝛤 𝐿   𝑒 −2𝑗𝛽𝑙 | 𝛤(𝑙 |=| 𝛤 𝐿 |  𝑒 𝑗  𝜑 𝐿   𝑒 −2𝑗𝛽𝑙 ∠ 𝛤(𝑙)= 𝜑 𝐿 −2𝛽𝑙 Z(𝑙)= 𝑉(𝑙) 𝐼(𝑙) = 𝑍 ∘ 𝑍 𝐿 +𝑗 𝑍 ∘ tan⁡(β𝑙) 𝑍 ∘ +𝑗 𝑍 𝐿 tan⁡(β𝑙) V(𝑙+0.5λ)=−V(𝑙) Z(𝑙+0.5λ)=Z(𝑙) Г(𝑙+0.5λ)=Г(𝑙) I(𝑙+0.5λ)=−I(𝑙)

Smith Chart: 𝛤(𝑧)= 𝑍(𝑧)− 𝑍 ∘ 𝑍(𝑧)+ 𝑍 ∘ = 𝑧(𝑧)−1 𝑧(𝑧)+1 𝑧(𝑧)= 1+𝛤(𝑧 1−𝛤(𝑧 𝑧(𝑧)=𝑟+𝑗𝑥,𝛤(𝑧)= 𝛤 𝑟 +𝑗 𝛤 𝑖 𝑟+𝑗𝑥= 1+ 𝛤 𝑟 +𝑗 𝛤 𝑖 1− 𝛤 𝑟 −𝑗 𝛤 𝑖 = 1+ 𝛤 𝑟 +𝑗 𝛤 𝑖 1− 𝛤 𝑟 +𝑗 𝛤 𝑖 1− 𝛤 𝑟 −𝑗 𝛤 𝑖 1− 𝛤 𝑟 +𝑗 𝛤 𝑖 = 1− 𝛤 𝑟 2 − 𝛤 𝑖 2 +𝑗2 𝛤 𝑖 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 𝑟= 1− 𝛤 𝑟 2 − 𝛤 𝑖 2 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 ⇒ 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 = 1 𝑟 − 𝛤 𝑟 2 𝑟 − 𝛤 𝑖 2 𝑟 ⇒𝑟−2𝑟 𝛤 𝑟 +𝑟 𝛤 𝑟 2 +𝑟 𝛤 𝑖 2 =1− 𝛤 𝑟 2 − 𝛤 𝑖 2 1+𝑟) 𝛤 𝑟 2 −2𝑟 𝛤 𝑟 +(1+𝑟) 𝛤 𝑖 2 =1−𝑟⇒ 𝛤 𝑟 2 −2 𝑟 𝑟+1 𝛤 𝑟 + 𝛤 𝑖 2 = 1−𝑟 1+𝑟 𝛤 𝑟 − 𝑟 𝑟+1 2 + 𝛤 𝑖 2 = 1−𝑟 1+𝑟 + 𝑟 2 1+𝑟 2 = 1 1+𝑟 2

Smith Chart: 𝛤(𝑧)= 𝑍(𝑧)− 𝑍 ∘ 𝑍(𝑧)+ 𝑍 ∘ = 𝑧(𝑧)−1 𝑧(𝑧)+1 𝑧(𝑧)= 1+𝛤(𝑧 1−𝛤(𝑧 𝑧(𝑧)=𝑟+𝑗𝑥,𝛤(𝑧)= 𝛤 𝑟 +𝑗 𝛤 𝑖 𝑟+𝑗𝑥= 1+ 𝛤 𝑟 +𝑗 𝛤 𝑖 1− 𝛤 𝑟 −𝑗 𝛤 𝑖 = 1+ 𝛤 𝑟 +𝑗 𝛤 𝑖 1− 𝛤 𝑟 +𝑗 𝛤 𝑖 1− 𝛤 𝑟 −𝑗 𝛤 𝑖 1− 𝛤 𝑟 +𝑗 𝛤 𝑖 = 1− 𝛤 𝑟 2 − 𝛤 𝑖 2 +𝑗2 𝛤 𝑖 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 𝑥= 2 𝛤 𝑖 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 = 2 𝑥 𝛤 𝑖 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 − 2 𝑥 𝛤 𝑖 =0 1− 𝛤 𝑟 2 + 𝛤 𝑖 − 1 𝑥 2 = 1 𝑥 2

Z Chart: 𝛤 𝑟 − 𝑟 𝑟+1 2 + 𝛤 𝑖 2 = 1−𝑟 1+𝑟 + 𝑟 2 1+𝑟 2 = 1 1+𝑟 2 𝛤 𝑟 − 𝑟 𝑟+1 2 + 𝛤 𝑖 2 = 1−𝑟 1+𝑟 + 𝑟 2 1+𝑟 2 = 1 1+𝑟 2 1− 𝛤 𝑟 2 + 𝛤 𝑖 − 1 𝑥 2 = 1 𝑥 2

Y Chart: 𝛤(𝑧)= 𝑍(𝑧)− 𝑍 ∘ 𝑍(𝑧)+ 𝑍 ∘ = 𝑧(𝑧)−1 𝑧(𝑧)+1 𝑦(𝑧)= 1−𝛤(𝑧 1+𝛤(𝑧 𝑦(𝑧)=𝑔+𝑗𝑏,𝛤(𝑧)= 𝛤 𝑟 +𝑗 𝛤 𝑖 𝑔+𝑗𝑏= 1− 𝛤 𝑟 −𝑗 𝛤 𝑖 1+ 𝛤 𝑟 +𝑗 𝛤 𝑖 = 1− 𝛤 𝑟 −𝑗 𝛤 𝑖 1+ 𝛤 𝑟 −𝑗 𝛤 𝑖 1+ 𝛤 𝑟 +𝑗 𝛤 𝑖 1+ 𝛤 𝑟 −𝑗 𝛤 𝑖 = 1− 𝛤 𝑟 2 − 𝛤 𝑖 2 −𝑗2 𝛤 𝑖 1+ 𝛤 𝑟 2 + 𝛤 𝑖 2 𝑔= 1− 𝛤 𝑟 2 − 𝛤 𝑖 2 1+ 𝛤 𝑟 2 + 𝛤 𝑖 2 ⇒ 1+ 𝛤 𝑟 2 + 𝛤 𝑖 2 = 1 𝑔 − 𝛤 𝑟 2 𝑔 − 𝛤 𝑖 2 𝑔 ⇒𝑔+2𝑔 𝛤 𝑟 +𝑔 𝛤 𝑟 2 +𝑔 𝛤 𝑖 2 =1− 𝛤 𝑟 2 − 𝛤 𝑖 2 1+𝑔) 𝛤 𝑟 2 +2𝑔 𝛤 𝑟 +(1+𝑔) 𝛤 𝑖 2 =1−𝑔⇒ 𝛤 𝑟 2 +2𝑔 𝑔 𝑟+1 𝛤 𝑟 + 𝛤 𝑖 2 = 1−𝑔 1+𝑔 𝛤 𝑟 + 𝑔 𝑔+1 2 + 𝛤 𝑖 2 = 1−𝑔 1+𝑔 + 𝑔 2 1+𝑔 2 = 1 1+𝑔 2

Y Chart: 𝛤(𝑧)= 𝑍(𝑧)− 𝑍 ∘ 𝑍(𝑧)+ 𝑍 ∘ = 𝑧(𝑧)−1 𝑧(𝑧)+1 𝑦(𝑧)= 1−𝛤(𝑧 1+𝛤(𝑧 𝑦(𝑧)=𝑔+𝑗𝑏,𝛤(𝑧)= 𝛤 𝑟 +𝑗 𝛤 𝑖 𝑔+𝑗𝑏= 1− 𝛤 𝑟 −𝑗 𝛤 𝑖 1+ 𝛤 𝑟 +𝑗 𝛤 𝑖 = 1− 𝛤 𝑟 −𝑗 𝛤 𝑖 1+ 𝛤 𝑟 −𝑗 𝛤 𝑖 1+ 𝛤 𝑟 +𝑗 𝛤 𝑖 1+ 𝛤 𝑟 −𝑗 𝛤 𝑖 = 1− 𝛤 𝑟 2 − 𝛤 𝑖 2 −𝑗2 𝛤 𝑖 1+ 𝛤 𝑟 2 + 𝛤 𝑖 2 𝑥= 2 𝛤 𝑖 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 = 2 𝑏 𝛤 𝑖 1− 𝛤 𝑟 2 + 𝛤 𝑖 2 − 2 𝑏 𝛤 𝑖 =0 1− 𝛤 𝑟 2 + 𝛤 𝑖 − 1 𝑏 2 = 1 𝑏 2

ZY Chart: 𝛤 𝑟 − 𝑟 𝑟+1 2 + 𝛤 𝑖 2 = 1−𝑟 1+𝑟 + 𝑟 2 1+𝑟 2 = 1 1+𝑟 2 𝛤 𝑟 − 𝑟 𝑟+1 2 + 𝛤 𝑖 2 = 1−𝑟 1+𝑟 + 𝑟 2 1+𝑟 2 = 1 1+𝑟 2 1− 𝛤 𝑟 2 + 𝛤 𝑖 − 1 𝑥 2 = 1 𝑥 2 1− 𝛤 𝑟 2 + 𝛤 𝑖 − 1 𝑏 2 = 1 𝑏 2 𝛤 𝑟 + 𝑔 𝑔+1 2 + 𝛤 𝑖 2 = 1−𝑔 1+𝑔 + 𝑔 2 1+𝑔 2 = 1 1+𝑔 2